8,762 research outputs found

    Computational Complexity of Synchronization under Regular Commutative Constraints

    Full text link
    Here we study the computational complexity of the constrained synchronization problem for the class of regular commutative constraint languages. Utilizing a vector representation of regular commutative constraint languages, we give a full classification of the computational complexity of the constraint synchronization problem. Depending on the constraint language, our problem becomes PSPACE-complete, NP-complete or polynomial time solvable. In addition, we derive a polynomial time decision procedure for the complexity of the constraint synchronization problem, given some constraint automaton accepting a commutative language as input.Comment: Published in COCOON 2020 (The 26th International Computing and Combinatorics Conference); 2nd version is update of the published version and 1st version; both contain a minor error, the assumption of maximality in the NP-c and PSPACE-c results (propositions 5 & 6) is missing, and of incomparability of the vectors in main theorem; fixed in this version. See (new) discussion after main theore

    Monadic Second-Order Logic with Arbitrary Monadic Predicates

    Full text link
    We study Monadic Second-Order Logic (MSO) over finite words, extended with (non-uniform arbitrary) monadic predicates. We show that it defines a class of languages that has algebraic, automata-theoretic and machine-independent characterizations. We consider the regularity question: given a language in this class, when is it regular? To answer this, we show a substitution property and the existence of a syntactical predicate. We give three applications. The first two are to give very simple proofs that the Straubing Conjecture holds for all fragments of MSO with monadic predicates, and that the Crane Beach Conjecture holds for MSO with monadic predicates. The third is to show that it is decidable whether a language defined by an MSO formula with morphic predicates is regular.Comment: Conference version: MFCS'14, Mathematical Foundations of Computer Science Journal version: ToCL'17, Transactions on Computational Logi

    Generalizations of the distributed Deutsch-Jozsa promise problem

    Full text link
    In the {\em distributed Deutsch-Jozsa promise problem}, two parties are to determine whether their respective strings x,y{0,1}nx,y\in\{0,1\}^n are at the {\em Hamming distance} H(x,y)=0H(x,y)=0 or H(x,y)=n2H(x,y)=\frac{n}{2}. Buhrman et al. (STOC' 98) proved that the exact {\em quantum communication complexity} of this problem is O(logn){\bf O}(\log {n}) while the {\em deterministic communication complexity} is Ω(n){\bf \Omega}(n). This was the first impressive (exponential) gap between quantum and classical communication complexity. In this paper, we generalize the above distributed Deutsch-Jozsa promise problem to determine, for any fixed n2kn\frac{n}{2}\leq k\leq n, whether H(x,y)=0H(x,y)=0 or H(x,y)=kH(x,y)= k, and show that an exponential gap between exact quantum and deterministic communication complexity still holds if kk is an even such that 12nk<(1λ)n\frac{1}{2}n\leq k<(1-\lambda) n, where 0<λ<120< \lambda<\frac{1}{2} is given. We also deal with a promise version of the well-known {\em disjointness} problem and show also that for this promise problem there exists an exponential gap between quantum (and also probabilistic) communication complexity and deterministic communication complexity of the promise version of such a disjointness problem. Finally, some applications to quantum, probabilistic and deterministic finite automata of the results obtained are demonstrated.Comment: we correct some errors of and improve the presentation the previous version. arXiv admin note: substantial text overlap with arXiv:1309.773

    Real-Time Vector Automata

    Full text link
    We study the computational power of real-time finite automata that have been augmented with a vector of dimension k, and programmed to multiply this vector at each step by an appropriately selected k×kk \times k matrix. Only one entry of the vector can be tested for equality to 1 at any time. Classes of languages recognized by deterministic, nondeterministic, and "blind" versions of these machines are studied and compared with each other, and the associated classes for multicounter automata, automata with multiplication, and generalized finite automata.Comment: 14 page

    On the Hierarchy of Block Deterministic Languages

    Full text link
    A regular language is kk-lookahead deterministic (resp. kk-block deterministic) if it is specified by a kk-lookahead deterministic (resp. kk-block deterministic) regular expression. These two subclasses of regular languages have been respectively introduced by Han and Wood (kk-lookahead determinism) and by Giammarresi et al. (kk-block determinism) as a possible extension of one-unambiguous languages defined and characterized by Br\"uggemann-Klein and Wood. In this paper, we study the hierarchy and the inclusion links of these families. We first show that each kk-block deterministic language is the alphabetic image of some one-unambiguous language. Moreover, we show that the conversion from a minimal DFA of a kk-block deterministic regular language to a kk-block deterministic automaton not only requires state elimination, and that the proof given by Han and Wood of a proper hierarchy in kk-block deterministic languages based on this result is erroneous. Despite these results, we show by giving a parameterized family that there is a proper hierarchy in kk-block deterministic regular languages. We also prove that there is a proper hierarchy in kk-lookahead deterministic regular languages by studying particular properties of unary regular expressions. Finally, using our valid results, we confirm that the family of kk-block deterministic regular languages is strictly included into the one of kk-lookahead deterministic regular languages by showing that any kk-block deterministic unary language is one-unambiguous
    corecore