31 research outputs found

    Gene regulated car driving: using a gene regulatory network to drive a virtual car

    Get PDF
    This paper presents a virtual racing car controller based on an artificial gene regulatory network. Usually used to control virtual cells in developmental models, recent works showed that gene regulatory networks are also capable to control various kinds of agents such as foraging agents, pole cart, swarm robots, etc. This paper details how a gene regulatory network is evolved to drive on any track through a three-stages incremental evolution. To do so, the inputs and outputs of the network are directly mapped to the car sensors and actuators. To make this controller a competitive racer, we have distorted its inputs online to make it drive faster and to avoid opponents. Another interesting property emerges from this approach: the regulatory network is naturally resistant to noise. To evaluate this approach, we participated in the 2013 simulated racing car competition against eight other evolutionary and scripted approaches. After its first participation, this approach finished in third place in the competition

    Imitation-Projected Policy Gradient for Programmatic Reinforcement Learning

    Get PDF
    We study the problem of programmatic reinforcement learning, in which policies are represented as short programs in a symbolic language. Programmatic policies can be more interpretable, generalizable, and amenable to formal verification than neural policies; however, designing rigorous learning approaches for such policies remains a challenge. Our approach to this challenge - a meta-algorithm called PROPEL - is based on three insights. First, we view our learning task as optimization in policy space, modulo the constraint that the desired policy has a programmatic representation, and solve this optimization problem using a form of mirror descent that takes a gradient step into the unconstrained policy space and then projects back onto the constrained space. Second, we view the unconstrained policy space as mixing neural and programmatic representations, which enables employing state-of-the-art deep policy gradient approaches. Third, we cast the projection step as program synthesis via imitation learning, and exploit contemporary combinatorial methods for this task. We present theoretical convergence results for PROPEL and empirically evaluate the approach in three continuous control domains. The experiments show that PROPEL can significantly outperform state-of-the-art approaches for learning programmatic policies

    Gene regulated car driving: using a gene regulatory network to drive a virtual car

    Get PDF
    This paper presents a virtual racing car controller based on an artificial gene regulatory network. Usually used to control virtual cells in developmental models, recent works showed that gene regulatory networks are also capable to control various kinds of agents such as foraging agents, pole cart, swarm robots, etc. This paper details how a gene regulatory network is evolved to drive on any track through a three-stages incremental evolution. To do so, the inputs and outputs of the network are directly mapped to the car sensors and actuators. To make this controller a competitive racer, we have distorted its inputs online to make it drive faster and to avoid opponents. Another interesting property emerges from this approach: the regulatory network is naturally resistant to noise. To evaluate this approach, we participated in the 2013 simulated racing car competition against eight other evolutionary and scripted approaches. After its first participation, this approach finished in third place in the competition

    Assuring Safety under Uncertainty in Learning-Based Control Systems

    Get PDF
    Learning-based controllers have recently shown impressive results for different robotic tasks in well-defined environments, successfully solving a Rubiks cube and sorting objects in a bin. These advancements promise to enable a host of new capabilities for complex robotic systems. However, these learning-based controllers cannot yet be deployed in highly uncertain environments due to significant issues relating to learning reliability, robustness, and safety. To overcome these issues, this thesis proposes new methods for integrating model information (e.g. model-based control priors) into the reinforcement learning framework, which is crucial to ensuring reliability and safety. I show, both empirically and theoretically, that this model information greatly reduces variance in learning and can effectively constrain the policy search space, thus enabling significant improvements in sample complexity for the underlying RL algorithms. Furthermore, by leveraging control barrier functions and Gaussian process uncertainty models, I show how system safety can be maintained under uncertainty without interfering with the learning process (e.g. distorting the policy gradients). The last part of the thesis will discuss fundamental limitations that arise when utilizing machine learning to derive safety guarantees. In particular, I show that widely used uncertainty models can be highly inaccurate when predicting rare events, and examine the implications of this for safe learning. To overcome some of these limitations, a novel framework is developed based on assume-guarantee contracts in order to ensure safety in multi-agent human environments. The proposed approach utilizes contracts to impose loose responsibilities on agents in the environment, which are learned from data. Imposing these responsibilities on agents, rather than treating their uncertainty as a purely random process, allows us to achieve both safety and efficiency in interactions.</p

    New Frameworks for Structured Policy Learning

    Get PDF
    Sequential decision making applications are playing an increasingly important role in everyday life. Research interest in machine learning approaches to sequential decision making has surged thanks to recent empirical successes of reinforcement learning and imitation learning techniques, partly fueled by recent advances in deep learning-based function approximation. However in many real-world sequential decision making applications, relying purely on black box policy learning is often insufficient, due to practical requirements of data efficiency, interpretability, safety guarantees, etc. These challenges collectively make it difficult for many existing policy learning methods to find success in realistic applications. In this dissertation, we present recent advances in structured policy learning, which are new machine learning frameworks that integrate policy learning with principled notions of domain knowledge, which spans value-based, policy-based, and model-based structures. Our framework takes flexible reduction-style approaches that can integrate structure with reinforcement learning, imitation learning and robust control techniques. In addition to methodological advances, we demonstrate several successful applications of the new policy learning frameworks.</p
    corecore