602 research outputs found

    Patterns of Scalable Bayesian Inference

    Full text link
    Datasets are growing not just in size but in complexity, creating a demand for rich models and quantification of uncertainty. Bayesian methods are an excellent fit for this demand, but scaling Bayesian inference is a challenge. In response to this challenge, there has been considerable recent work based on varying assumptions about model structure, underlying computational resources, and the importance of asymptotic correctness. As a result, there is a zoo of ideas with few clear overarching principles. In this paper, we seek to identify unifying principles, patterns, and intuitions for scaling Bayesian inference. We review existing work on utilizing modern computing resources with both MCMC and variational approximation techniques. From this taxonomy of ideas, we characterize the general principles that have proven successful for designing scalable inference procedures and comment on the path forward

    Geometric ergodicity of the Random Walk Metropolis with position-dependent proposal covariance

    Get PDF
    We consider a Metropolis-Hastings method with proposal kernel N(x,hG−1(x))\mathcal{N}(x,hG^{-1}(x)), where xx is the current state. After discussing specific cases from the literature, we analyse the ergodicity properties of the resulting Markov chains. In one dimension we find that suitable choice of G−1(x)G^{-1}(x) can change the ergodicity properties compared to the Random Walk Metropolis case N(x,hΣ)\mathcal{N}(x,h\Sigma), either for the better or worse. In higher dimensions we use a specific example to show that judicious choice of G−1(x)G^{-1}(x) can produce a chain which will converge at a geometric rate to its limiting distribution when probability concentrates on an ever narrower ridge as ∣x∣|x| grows, something which is not true for the Random Walk Metropolis.Comment: 15 pages + appendices, 4 figure

    A framework for the construction of generative models for mesoscale structure in multilayer networks

    Get PDF
    Multilayer networks allow one to represent diverse and coupled connectivity patterns—such as time-dependence, multiple subsystems, or both—that arise in many applications and which are difficult or awkward to incorporate into standard network representations. In the study of multilayer networks, it is important to investigate mesoscale (i.e., intermediate-scale) structures, such as dense sets of nodes known as communities, to discover network features that are not apparent at the microscale or the macroscale. The ill-defined nature of mesoscale structure and its ubiquity in empirical networks make it crucial to develop generative models that can produce the features that one encounters in empirical networks. Key purposes of such models include generating synthetic networks with empirical properties of interest, benchmarking mesoscale-detection methods and algorithms, and inferring structure in empirical multilayer networks. In this paper, we introduce a framework for the construction of generative models for mesoscale structures in multilayer networks. Our framework provides a standardized set of generative models, together with an associated set of principles from which they are derived, for studies of mesoscale structures in multilayer networks. It unifies and generalizes many existing models for mesoscale structures in fully ordered (e.g., temporal) and unordered (e.g., multiplex) multilayer networks. One can also use it to construct generative models for mesoscale structures in partially ordered multilayer networks (e.g., networks that are both temporal and multiplex). Our framework has the ability to produce many features of empirical multilayer networks, and it explicitly incorporates a user-specified dependency structure between layers. We discuss the parameters and properties of our framework, and we illustrate examples of its use with benchmark models for community-detection methods and algorithms in multilayer networks

    Predicting Flavonoid UGT Regioselectivity with Graphical Residue Models and Machine Learning.

    Get PDF
    Machine learning is applied to a challenging and biologically significant protein classification problem: the prediction of flavonoid UGT acceptor regioselectivity from primary protein sequence. Novel indices characterizing graphical models of protein residues are introduced. The indices are compared with existing amino acid indices and found to cluster residues appropriately. A variety of models employing the indices are then investigated by examining their performance when analyzed using nearest neighbor, support vector machine, and Bayesian neural network classifiers. Improvements over nearest neighbor classifications relying on standard alignment similarity scores are reported
    • …
    corecore