43 research outputs found

    Multiple Subject Learning for Inter-Subject Prediction

    No full text
    International audienceMulti-voxel pattern analysis has become an important tool for neuroimaging data analysis by allowing to predict a behavioral variable from the imaging patterns. However, standard models do not take into account the differences that can exist between subjects, so that they perform poorly in the inter-subject prediction task. We here introduce a model called Multiple Subject Learning (MSL) that is designed to effectively combine the information provided by fMRI data from several subjects; in a first stage, a weighting of single-subject kernels is learnt using multiple kernel learning to produce a classifier; then, a data shuffling procedure allows to build ensembles of such classifiers, which are then combined by a majority vote. We show that MSL outperforms other models in the inter-subject prediction task and we discuss the empirical behavior of this new model

    PAC-Bayesian High Dimensional Bipartite Ranking

    Get PDF
    This paper is devoted to the bipartite ranking problem, a classical statistical learning task, in a high dimensional setting. We propose a scoring and ranking strategy based on the PAC-Bayesian approach. We consider nonlinear additive scoring functions, and we derive non-asymptotic risk bounds under a sparsity assumption. In particular, oracle inequalities in probability holding under a margin condition assess the performance of our procedure, and prove its minimax optimality. An MCMC-flavored algorithm is proposed to implement our method, along with its behavior on synthetic and real-life datasets
    corecore