1,522,047 research outputs found
Reachability in Vector Addition Systems is Primitive-Recursive in Fixed Dimension
The reachability problem in vector addition systems is a central question,
not only for the static verification of these systems, but also for many
inter-reducible decision problems occurring in various fields. The currently
best known upper bound on this problem is not primitive-recursive, even when
considering systems of fixed dimension. We provide significant refinements to
the classical decomposition algorithm of Mayr, Kosaraju, and Lambert and to its
termination proof, which yield an ACKERMANN upper bound in the general case,
and primitive-recursive upper bounds in fixed dimension. While this does not
match the currently best known TOWER lower bound for reachability, it is
optimal for related problems
Sampling the Fermi statistics and other conditional product measures
Through a Metropolis-like algorithm with single step computational cost of
order one, we build a Markov chain that relaxes to the canonical Fermi
statistics for k non-interacting particles among m energy levels. Uniformly
over the temperature as well as the energy values and degeneracies of the
energy levels we give an explicit upper bound with leading term km(ln k) for
the mixing time of the dynamics. We obtain such construction and upper bound as
a special case of a general result on (non-homogeneous) products of ultra
log-concave measures (like binomial or Poisson laws) with a global constraint.
As a consequence of this general result we also obtain a disorder-independent
upper bound on the mixing time of a simple exclusion process on the complete
graph with site disorder. This general result is based on an elementary
coupling argument and extended to (non-homogeneous) products of log-concave
measures.Comment: 21 page
Bounds on the Speed and on Regeneration Times for Certain Processes on Regular Trees
We develop a technique that provides a lower bound on the speed of transient
random walk in a random environment on regular trees. A refinement of this
technique yields upper bounds on the first regeneration level and regeneration
time. In particular, a lower and upper bound on the covariance in the annealed
invariance principle follows. We emphasize the fact that our methods are
general and also apply in the case of once-reinforced random walk. Durrett,
Kesten and Limic (2002) prove an upper bound of the form for the
speed on the -ary tree, where is the reinforcement parameter. For
we provide a lower bound of the form , where
is the survival probability of an associated branching process.Comment: 21 page
A refined error analysis for fixed-degree polynomial optimization over the simplex
We consider the problem of minimizing a fixed-degree polynomial over the
standard simplex. This problem is well known to be NP-hard, since it contains
the maximum stable set problem in combinatorial optimization as a special case.
In this paper, we revisit a known upper bound obtained by taking the minimum
value on a regular grid, and a known lower bound based on P\'olya's
representation theorem. More precisely, we consider the difference between
these two bounds and we provide upper bounds for this difference in terms of
the range of function values. Our results refine the known upper bounds in the
quadratic and cubic cases, and they asymptotically refine the known upper bound
in the general case.Comment: 13 page
Determining global mean-first-passage time of random walks on Vicsek fractals using eigenvalues of Laplacian matrices
The family of Vicsek fractals is one of the most important and
frequently-studied regular fractal classes, and it is of considerable interest
to understand the dynamical processes on this treelike fractal family. In this
paper, we investigate discrete random walks on the Vicsek fractals, with the
aim to obtain the exact solutions to the global mean first-passage time
(GMFPT), defined as the average of first-passage time (FPT) between two nodes
over the whole family of fractals. Based on the known connections between FPTs,
effective resistance, and the eigenvalues of graph Laplacian, we determine
implicitly the GMFPT of the Vicsek fractals, which is corroborated by numerical
results. The obtained closed-form solution shows that the GMFPT approximately
grows as a power-law function with system size (number of all nodes), with the
exponent lies between 1 and 2. We then provide both the upper bound and lower
bound for GMFPT of general trees, and show that leading behavior of the upper
bound is the square of system size and the dominating scaling of the lower
bound varies linearly with system size. We also show that the upper bound can
be achieved in linear chains and the lower bound can be reached in star graphs.
This study provides a comprehensive understanding of random walks on the Vicsek
fractals and general treelike networks.Comment: Definitive version accepted for publication in Physical Review
- …
