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Abstract. Through a Metropolis-like algorithm with single step computational cost of order one, we build a Markov chain that
relaxes to the canonical Fermi statistics for k non-interacting particles among m energy levels. Uniformly over the temperature
as well as the energy values and degeneracies of the energy levels we give an explicit upper bound with leading term km ln k for
the mixing time of the dynamics. We obtain such construction and upper bound as a special case of a general result on (non-
homogeneous) products of ultra log-concave measures (like binomial or Poisson laws) with a global constraint. As a consequence
of this general result we also obtain a disorder-independent upper bound on the mixing time of a simple exclusion process on the
complete graph with site disorder. This general result is based on an elementary coupling argument, illustrated in a simulation
appendix and extended to (non-homogeneous) products of log-concave measures.

Résumé. En définissant un algorithme de type Metropolis dont le coût de chaque pas est d’ordre 1, nous construisons une chaîne
de Markov dont la mesure d’équilibre est donnée par la statistique de Fermi canonique pour k particules sans interaction parmi m

niveaux d’énergie. Uniformément en la température, ainsi qu’en les énergies et capacités des différents niveaux d’énergie, nous
donnons une majoration explicite et de terme dominant km ln k du temps de mélange de la dynamique. Nous obtenons cette
construction et cette majoration comme cas particulier d’un résultat général sur les produits (non homogènes) de mesures ultra log-
concaves (comme les lois binômiales ou de Poisson) sous une contrainte globale. Ce résultat général fournit aussi une majoration
indépendante du désordre pour le temps de mélange du processus d’exclusion simple sur le graphe complet en potentiel aléatoire.
Il découle d’un argument de couplage élémentaire, est illustré dans une appendice de simulations et étendu aux produits (non
homogènes) de mesures log-concaves.
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1. From the Fermi statistics to general conditional products of log-concave measures

1.1. Sampling the Fermi statistics

Given two positive integers k and m, given a non-negative real number β , given m real numbers v1, . . . , vm and given
m integers n1, . . . , nm such that

n :=
m∑

j=1

nj ≥ k, (1.1)
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the canonical Fermi statistics at inverse temperature β for k non-interacting particles among the m energy levels
1, . . . ,m, with energy values v1, . . . , vm and degeneracies n1, . . . , nm is the conditional probability measure on

Xk,m := {
(k1, . . . , km) ∈ N

m: k1 + · · · + km = k
}

(1.2)

given by

ν := μ(·|Xk,m) (1.3)

with μ the product measure on N
m such that

μ(k1, . . . , km) := 1

Z

m∏
j=1

(
nj

kj

)
exp{−βkjvj }, (1.4)

Z :=
∑

k1,...,km

m∏
j=1

(
nj

kj

)
exp{−βkjvj } (1.5)

with
(nj

kj

) = 0 whenever kj > nj . In other words, ν is a (non-homogeneous) product of binomial laws in k1, . . . , km

with the global constraint

k1 + · · · + km = k (1.6)

and we can write

ν(k1, . . . , km) = 1

Q

m∏
j=1

eφj (kj ), (k1, . . . , km) ∈ Xk,m, (1.7)

where the φj are defined by

φj : kj ∈ N �→ −βkjvj + ln

(
nj

kj

)
∈ R ∪ {−∞} (1.8)

and Q is such that ν is a probability measure.
The first aim of this paper is to describe an algorithm that simulates a sampling according to ν in a time that can be

bounded from above by an explicit polynomial in k and m, uniformly over β , (vj )1≤j≤m and (nj )1≤j≤m. The reason
why we prefer a bound in k and m rather than in the ‘volume’ of the system n = ∑

j nj , will be clarified later.
A first naive (and wrong) idea to do so consists in choosing the position (the energy level) of a first, second, . . . and

eventually kth particle in the following way. First choose randomly the position of the first particle according to the
exponential weights associated with the ‘free entropies’ of the empty sites, that is choose level j with a probability
proportional to exp{−βvj + lnnj }. Then decrease by 1 the degeneracy of the chosen energy level and repeat the
procedure to choose the position of the second, third, . . . and eventually kth particle. It is easy to check that, doing so,
the final distribution of the occupation numbers k1, . . . , km associated with the different energy levels, that is of the
numbers of particles placed in each level, is in general not given by ν as soon as k is larger than one. But it turns out
that this naive idea can be adapted to build an efficient algorithm to perform approximate samplings under the Fermi
statistics.

Very classically, the fast sampling performed by the algorithm we will build will be obtained by running a Markov
chain X with transition matrix p on Xk,m and with equilibrium measure ν. The efficiency of the algorithm will be
measured through the bounds that we will be able to give on the mixing time tε , defined for any positive ε < 1 by

tε := inf
{
t ≥ 0: d(t) ≤ ε

}
, (1.9)

d(t) := max
η∈Xk,m

∥∥pt(η, ·) − ν
∥∥

TV, (1.10)
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where ‖ · ‖TV stands for the total variation distance defined for any probability measures ν1 and ν2 on Xk,m by

‖ν1 − ν2‖TV := max
A⊂Xk,m

∣∣ν1(A) − ν2(A)
∣∣ = 1

2

∑
η∈Xk,m

∣∣ν1(η) − ν2(η)
∣∣. (1.11)

As a consequence, estimating mixing times is not the only one issue of this paper, building a ‘good’ Markov chain is
part of the problem.

As far as that part of the problem is concerned, we propose to build a Metropolis-like algorithm that uses the
‘free energies’ of the naive approach to define a conservative dynamics. Assuming that at time t ∈ N the system is in
some configuration Xt = η in Xk,m with ν(η) > 0, and defining for any η = (k1, . . . , km) and any distinct i and j in
{1; . . . ;m}

ηij := (
k′

1, . . . , k
′
m

)
with k′

s =
⎧⎨
⎩

ks for s ∈ {1; . . . ;m} \ {i; j},
ki − 1 if s = i,
kj + 1 if s = j ,

(1.12)

the configuration at time t + 1 will be decided as follows:

• choose a particle with uniform probability (it will stand in a given level i with probability ki/k),
• choose an energy level with uniform probability (a given level j will be chosen with probability 1/m),
• with i the level where stood the chosen particle and j the chosen energy level, extract a uniform variable U on

[0;1) and set Xt+1 = ηij if i �= j and

U < exp
{−βvj + ln(nj − kj ) + βvi − ln

(
ni − (ki − 1)

)}
, (1.13)

Xt+1 = η if not.

In other words, denoting by [a]+ = (a + |a|)/2 the positive part of any real number a and with

ψj :kj ∈ {0; . . . ;nj } �→ −βvj + ln(nj − kj ) ∈ R ∪ {−∞}, j ∈ {1; . . . ;m}, (1.14)

for any distinct i and j in {1; . . . ;m}

P
(
Xt+1 = ηij |Xt = η

) = p
(
η,ηij

) = ki

k

1

m
exp

{−[
ψi(ki − 1) − ψj(kj )

]+}
(1.15)

and

P(Xt+1 = η|Xt = η) = p(η,η) = 1 −
∑
i �=j

p
(
η,ηij

)
. (1.16)

Remark. In order to avoid any ambiguity in (1.15) in the case ki = 0, we set ψi(−1) = +∞ (even though the algo-
rithm we described does not require any convention for ψi(−1)).

This Markov chain is certainly irreducible and aperiodic. To prove that it relaxes to ν we will check the reversibility
of the process with respect to ν. Then we will have to estimate the mixing time of the process. We will carry out both
the tasks in a more general setup.

1.2. A general result

For any function f : N → R we define

∇+f :x ∈ N �→ ∇+
x f := f (x + 1) − f (x), (1.17)

∇−f :x ∈ N \ {0} �→ ∇−
x f := f (x − 1) − f (x), (1.18)

�f :x ∈ N \ {0} �→ �xf := ∇+
x f + ∇−

x f = −∇−
x

(∇+f
)

(1.19)
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and we say that a measure γ on the integers

γ :x ∈ N �→ eφ(x) ∈ R+ (1.20)

with φ : N → R ∪ {−∞}, is log-concave if N \ γ −1({0}) is an interval of the integers and

γ (x)2 ≥ γ (x − 1)γ (x + 1), x ∈ N \ {0}, (1.21)

i.e., if ∇+φ is non-increasing, or, equivalently, −�φ is non-negative (with the obvious extension of the previous
definitions to such a possibly non-finite φ). The measure μ defined in (1.4) is a product of log-concave measures and
the canonical Fermi statistics is such a product measure normalized over the condition (1.6).

N.B. From now on, and except for explicit mentioning of additional hypotheses, we will only assume that the proba-
bility measure ν we want to sample is a product of log-concave measures normalized over the global constraint (1.6),
i.e., that ν is a probability on Xk,m that can be written in the form (1.7) with non-increasing ∇+φj ’s.

In this more general setup we will often refer to the indices j in {1; . . . ;m} as sites rather than energy levels of the
system.

Actually the eφj ’s of the Fermi statistics are much more than log-concave measures. They are ultra log-concave
measures according to the following definition by Pemantle [14] and Liggett [12].

Definition 1.2.1. A measure γ : N → R+ is ultra log-concave if x �→ x!γ (x) is log-concave.

In other words eφj is ultra log-concave if and only if

ψj := ∇+φj + ln(1 + ·) (1.22)

is non-increasing (for the Fermi statistics observe that so are the φj ’s and that (1.22) is consistent with (1.14)).
For birth and death processes that are reversible with respect to ultra log-concave measures, Caputo, Dai Pra

and Posta [6] proved modified log-Sobolev inequalities and stronger convex entropy decays, both giving good upper
bounds on the mixing time of the processes. Johnson [8] proved also easier Poincaré inequalities that give weaker
bounds on the mixing times. We refer to [1,13,15], for an introduction to this classical functional inequality approach
to convergence to equilibrium and we note that for such birth and death processes the ultra-log concavity hypotheses
allowed for a Bakry–Émery like approach (see [2]) to derive (modified) log-Sobolev inequalities. Actually, [6] was
an attempt to extend this celebrated analysis to Markov processes with jumps (see also [9] for a more geometric
perspective). But it turns out, as we will soon review, that beyond the case of birth and death processes the role of ultra
log-concavity to follow the Bakry–Émery line in the discrete setup is still unclear.

In this paper we will not follow the functional analysis approach to control mixing times. To bound from above the
mixing time of a Markov chain that is reversible with respect to a conditional product of ultra log-concave measures,
we will follow (and recall in Section 2) the non-less classical, and, in this case, elementary, probabilistic approach via
coalescent coupling. We will prove:

Theorem 1. If ν derives from a product of ultra log-concave measures, then the Markov chain with transition matrix p

defined by

p
(
η,ηij

) = ki

k

1

m
exp

{−[
ψi(ki − 1) − ψj (kj )

]+}
,

η = (k1, . . . , km) ∈ Xk,m \ ν−1{0},
i �= j ∈ {1; . . . ;m}, (1.23)

p(η,η) = 1 −
∑
i �=j

p
(
η,ηij

)
(1.24)
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is reversible with respect to ν and, for any positive ε < 1, its mixing time tε satisfies

tε ≤ km ln(k/ε). (1.25)

Proof. See Section 2. �

The most relevant point of Theorem 1 with respect to the previous results we know stands in the uniformity of
the upper bound above the disorder of the system (except for the ultra log-concavity hypothesis on eφj in each j ). In
particular and as far as the Fermi statistics is concerned, our estimate does not depend on the temperature, and, more
generally it is independent from the energy values as well as the level degeneracies.

To illustrate this fact let us start with the case nj = 1 for all j . In this case our dynamics is a simple exclusion
process with site disorder. Caputo [4,5] proved Poincaré inequalities for such processes, in their continuous time
version, assuming a uniform lower (and upper) bound on general transition rates, while Caputo, Dai Pra and Posta
[6], looking at particular rates for the process and still assuming moderate disorder – that is, uniform lower and upper
bounds on these rates – proved a modified log-Sobolev inequality. For the particular choice of rates they made, the
upper bound on the mixing time implied by [6] could not hold in a strong disorder context (for example with k = 1,
m = 3, v1 = v2 = 0, v3 > 0 and β � 1). Our uniformity over the disorder of the system depends then strongly on our
particular choice for the transition probabilities. As it is often the case with Markov processes on discrete state space,
the details of the dynamics are not less important than the properties of its equilibrium measure.

Under the moderate disorder hypotheses of [4–6], however, the upper bound on the mixing time implied by [6]
and suggested by [4,5] is better than our upper bound in Theorem 1 (by a factor of order k). But we will see that
introducing such moderate disorder hypotheses in our arguments directly improves our result by a factor of order
m ≥ k (see the last remark at the end of Section 2).

To close the discussion on simple exclusion processes we note that those of the arguments in [5] that do not depend
on the disorder suggest an upper bound on the mixing time of order m2 lnm. Theorem 1 improves this estimate when
k is small with respect to m.

As far as more general conditional non-homogeneous product of log-concave measures are concerned, we stress
once again that Theorem 1 gives a uniform bound over the disorder that can be improved by a factor of order m by
adding moderate disorder hypotheses (see the last remark at the end of Section 1.4 and our Simulation appendix).
Then, such product measures can be equilibrium measures of zero-range processes with a continuous time generator
as in [3,6]:

Lηf := 1

m

∑
i �=j

ci(ki)
(
f

(
ηij

) − f (η)
)
, (1.26)

where the cj :kj ∈ N �→ [0,+∞) are such that cj (0) = 0 and cj (kj ) > 0 for kj > 0. Indeed, such a process is
reversible with respect to ν provided that

∀j ∈ {1; . . . ;m}, ∀kj ∈ N, φj (kj ) =
∑

0<l≤kj

ln
1

cj (l)
. (1.27)

Boudou, Caputo, Dai Pra and Posta [3] proved a Poincaré inequality for such a process, assuming that there exists a
positive c such that

∀j ∈ {1; . . . ;m}, ∀kj ∈ N, cj (kj + 1) − cj (kj ) ≥ c. (1.28)

This is a moderate disorder hypothesis that implies the log-concavity of the μj . To go to modified log-Sobolev
inequalities, i.e., to good mixing time estimates rather than simple gap estimates, there is the additional hypothesis in
[6] that there exists a non-negative δ < c such that

∀j ∈ {1; . . . ;m}, ∀kj ∈ N, cj (kj + 1) − cj (kj ) ≤ c + δ. (1.29)
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Clearly there are ultra log-concave measures that do not satisfy (1.29): to have an ultra log-concave measure one needs
a strongly decreasing ∇+φj , i.e., a strongly increasing cj . Conversely, it is not true that (1.28) and (1.29) imply ultra
log-concavity, i.e.,

∀j ∈ {1; . . . ;m}, ∀kj ≥ 1, ln
kj + 1

cj (kj + 1)
≤ ln

kj

cj (kj )
. (1.30)

However, elementary algebra shows that (1.28) together with (1.29) implies

∀j ∈ {1; . . . ;m}, ∀kj ≥ 1, ln
kj + 1/2

cj (kj + 1)
≤ ln

kj

cj (kj )
(1.31)

and this strangely looks like (1.30). Therefore we said that the role played by ultra log-concavity is still unclear along
the functional analysis line of research in the discrete setup. We conclude stressing once again that in this paper we
will follow a different line, that our uniform bound on the mixing time comes from an elementary coupling argument
and that we do not need any moderate disorder hypothesis.

1.3. Interpolating between sites and particles

It seems that today available techniques are such that the less log-concavity we have, the more homogeneity we need to
control the convergence to equilibrium. Staying to the papers mentioned above, without ultra log-concavity or at least
something that looks like ultra log-concavity we only have Poincaré inequalities for non-homogeneous product of log-
concave measures, and without log-concavity we have modified log-Sobolev inequalities for homogeneous product
measures only (see [6]). In addition, the only result we know for a conservative dynamics in (weakly) disordered
context and with an equilibrium measure that is a product of measures that are not log-concave is that of Landim and
Noronha Neto [10] for the (continuous) Ginzburg–Landau process.

We will see that all the ideas of the proof of Theorem 1 can be extended to deal with a large class of conditional
product of log-concave measures that are not ultra log-concave. To do so, let us define

δ := max

{
λ ∈ [0;1]: ∀j ∈ {1; . . . ;m},∀kj > 0,−�kj

φj ≥ λ ln
1 + kj

kj

}
. (1.32)

In other words, δ is the largest real number in [0;1] for which all the

ψ
[δ]
j := ∇+φj + δ ln(1 + ·), j ∈ {1; . . . ;m}, (1.33)

are non-increasing. Denoting by a ∧ b the minimum of two real numbers a, b and defining

lδ := kδ(k ∧ m)1−δ (1.34)

we will prove:

Theorem 2. If δ > 0 then the Markov chain with transition matrix p defined by

p
(
η,ηij

) = kδ
i

lδ

1

m
exp

{−[
ψ

[δ]
i (ki − 1) − ψ

[δ]
j (kj )

]+}
,

η = (k1, . . . , km) ∈ Xk,m \ ν−1{0},
i �= j ∈ {1; . . . ;m}, (1.35)

p(η,η) = 1 −
∑
i �=j

p
(
η,ηij

)
(1.36)

is reversible with respect to ν and, for any positive ε < 1, its mixing time tε satisfies

tε ≤ (k ∧ m)1−δ

δ
km ln(k/ε). (1.37)
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Remark 1. By Hölder’s inequality, if δ > 0 then

m∑
i=1

kδ
i =

m∑
i=1

kδ
i 1

1−δ
{ki �=0} ≤

(
m∑

i=1

ki

)δ( m∑
i=1

1{ki �=0}

)1−δ

≤ lδ (1.38)

and this ensures that (1.35)–(1.36) define a probability matrix.

Remark 2. As far as this can make sense in our discrete setup, we note that the hypothesis δ > 0 is slightly weaker
than a “uniform strict log-concavity hypothesis” (see (1.32)).

Proof of Theorem 2. See Section 3. �

For δ = 1 the transition matrix represents an algorithm starting with a uniform choice of a particle. For δ = 0
Theorem 2 is empty but (1.35)–(1.36) still define a Markov chain X that can be seen as a particular version of
a discrete state space non-homogeneous Ginzburg–Landau process. In this case the transition matrix represents an
algorithm that starts with a uniform choice of a (non-empty) site. The case 0 < δ < 1 can be seen as an interpolation
between uniform choices of site and particle. More precisely, assuming that at time t ∈ N the system is in some
configuration Xt = η = (k1, . . . , km) in Xk,m \ ν−1{0}, the configuration at time t + 1 can be decided as follows.

• Choose a site i or no site at all with probabilities proportional to kδ
i and lδ − ∑

i k
δ
i .

• If some site i was chosen, then proceed as in the previously described algorithm using the functions ψ
[δ]
j instead of

the ψj ’s, if not, then set Xt+1 = η.

1.4. Last remarks and original motivation

First, we note that as long as one wants bounds that are uniform over the disorder, Theorem 1 gives the right order
for the mixing time: for the Fermi statistic in the very low temperature regime with, for example, v1 < v2 < · · · < vm

and n1, n2 ≥ k, the equilibrium measure will be concentrated on (k,0, . . . ,0) while, starting from (0, k,0, . . . ,0), the
system will reach the ground state in a time of order km lnk for large k (this is a coupon-collector estimate). This fact
is illustrated in our Simulation appendix.

Next, we observe that, with our definitions, p(η,η) can often be close to one, especially in strong disorder situations
or when the right- and left-hand sides in (1.38) are far from each other. If one would like to use these results to
perform practical simulations, then it could be useful to note that the computational time would still be improved by
implementing an algorithm that at each step simulates, for a given configuration η on the trajectory of the Markov
chain, the elapsed time before the particle reach a different configuration (this is a geometric time) and choose this
configuration η′ �= η according to the (easy to compute) associated law. It would then be enough to stop the algorithm
as soon as the total simulated time goes beyond the mixing time (and then return the last configuration, that the system
occupied at the mixing time) rather than waiting for the original algorithm to make a step number equal to the mixing
time.

Turning back to the first naive and wrong idea, it is interesting to note that it can easily be modified to determine
the most probable states of the system, i.e., the configurations η∗ = (k∗

1 , . . . , k∗
m) in Xk,m such that

m∑
j=1

φj

(
k∗
j

) = max
k1+···+km=k

m∑
j=1

φj (kj ). (1.39)

One can prove, using the concavity of the φj ’s, that the most probable configurations for the system with k particles
can be obtained from the most probable configurations (k′

1, . . . , k
′
m) for the system with k − 1 particles simply adding

one particle where the corresponding gain in ‘free energy’ is the highest, that is in j∗ such that

∇+
k′
j∗

φj∗ = max
j

∇+
k′
j

φj . (1.40)
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As a consequence one can place the particles one by one, each time maximizing this free energy gain, to build the
most probable configuration.

Then, as a referee pointed out, since the sampling problem is a trivial one in the Poissonian case (when all the μj ’s
are Poisson measures, so that ν is nothing but a multinomial law M), one can ask about the expected time needed
to perform a rejection sampling with respect to the multinomial case. It is given by maxη ν(η)/M(η). If we take
the Fermi statistics with m = k and all the nj equal to 1, then we find (optimizing on the multinomial parameters by
a geometric/arithmetic mean comparison) kk/k! ∼ ek/

√
2πk. Of course, the sampling problem for that Fermi statistics

is also a trivial one. But if we take β = 0 and all the nj equal to 2, it is not anymore a trivial problem and we find an
expected time for the rejection sampling that is logarithmically equivalent to (e/2)k .

Turning back to the Fermi statistics we now explain why we were interested in bounds in k and m rather than
in the volume n. Iovanella, Scoppola and Scoppola defined in [7] an algorithm to individuate cliques (i.e., complete
subgraphs) with k vertices inside a large Erdös–Reyni random graph with n vertices. Their algorithm requires to
perform repeated approximate samplings of Fermi statistics in volume n, with k particles and m = 2k + 1 energy
levels. Now, the key observation is that the largest cliques in Erdös–Reyni graphs with n vertices are of order lnn, so
that k and m in this problem are logarithmically small with respect to n. Before Theorem 1 the samplings for their
algorithm were done by running simple exclusion processes with k particles on the complete graph (with site disorder)
of size n. Such processes converge to equilibrium in a time of order kn lnk. Now the samplings are done in a time of
order km ln k ∼ 2k2 ln k, and that was the original motivation of the present work.

Finally we note that our bound in k and m is not only useful when k is small with respect to n but also when k is
close to n. In this case we can define a dynamics on the n − k vacancies rather than on the k particles.

2. Proof of Theorem 1

In this section we assume that ν is a measure on Xk,m deriving from a product of ultra log-concave measures, which
means that we can write ν(k1, . . . , km) = (1/Q)

∏
j eφj (kj ) and, for all j ∈ {1; . . . ;m}, ψj defined by (1.22) is non-

increasing.

2.1. Reversibility

We first prove that the transition matrix p defined by (1.23) and (1.24) is reversible with respect to the measure ν. Let
η = (k1, . . . , km) ∈ Xk,m \ ν−1{0} and let i �= j ∈ {1; . . . ;m}. We have p(η,ηij ) �= 0 if and only if ν(ηij ) �= 0 and, in
that case,

ν(ηij )

ν(η)
= eφi(ki−1)+φj (kj +1)

eφi(ki )+φj (kj )
= exp

{∇−
ki

φi + ∇+
kj

φj

}
(2.1)

while

p(ηij , η)

p(η,ηij )
= kj + 1

ki

exp
{−[

ψj(kj ) − ψi(ki − 1)
]+ + [

ψi(ki − 1) − ψj (kj )
]+}

(2.2)

= exp
{
ψi(ki − 1) − ψj(kj ) + ln(kj + 1) − ln(ki)

}
(2.3)

= exp
{∇+

ki−1φi − ∇+
kj

φj

}
(2.4)

= exp
{−∇−

ki
φi − ∇+

kj
φj

}
(2.5)

so that

ν(η)p
(
η,ηij

) = ν
(
ηij

)
p
(
ηij , η

)
. (2.6)
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2.2. A few words about the coupling method

In order to upper bound the mixing time of the Markov chain with transition matrix p, we will use the coupling
method. Given a Markov chain (X1,X2) on Xk,m × Xk,m, we say it is a (Markovian) coupling for the dynamics if
both X1 and X2 are Markov chains with transition matrix p. Given such a coupling, we define the coupling time
τcouple as the first (random) time for which the chains meet, that is

τcouple := inf
{
t ≥ 0: X1

t = X2
t

}
. (2.7)

In this work, every coupling will also satisfy the condition

t ≥ τcouple ⇒ X1
t = X2

t . (2.8)

Then, it is a well-known fact that for all t ≥ 0,

d(t) ≤ max
η,θ∈Xk,m

P
(
τcouple > t |X1

0 = η,X2
0 = θ

)
, (2.9)

where d(t) is defined by (1.10). A proof of this fact as well as an exhaustive introduction to mixing time theory can
be found in [11].

In the proof of both Theorems 1 and 2 we will build a coupling for which there exists a function ρ that measures
in some sense a ‘distance’ between X1

t and X2
t and from which we will get a bound on the mixing time thanks to the

following proposition.

Proposition 2.2.1. Let (X1,X2) be a coupling for a Markov chain with transition matrix p. We assume that the
coupling satisfies the property (2.8). Let ρ : Xk,m × Xk,m → N such that ρ(η, θ) = 0 if and only if η = θ . If M is the
maximum of ρ and if there exists α > 1 such that, for all t ≥ 0,

E
(
ρ
(
X1

t+1,X
2
t+1

)|X1
t ,X

2
t

) ≤
(

1 − 1

α

)
ρ
(
X1

t ,X
2
t

)
, (2.10)

then for all ε > 0 the mixing time tε of the dynamics is upper bounded by α ln(M/ε).

Proof. Remark that (2.10) actually means that (ρ(X1
t ,X

2
t )(1 − 1/α)−t )t∈N is a super-martingale. Taking the expec-

tation we get

E
(
ρ
(
X1

t+1,X
2
t+1

)) ≤
(

1 − 1

α

)
E

(
ρ
(
X1

t ,X
2
t

))
. (2.11)

As a consequence

E
(
ρ
(
X1

t ,X
2
t

)) ≤
(

1 − 1

α

)t

E
(
ρ
(
X1

0,X
2
0

)) ≤ Me−t/α. (2.12)

Since we assume ρ(η, θ) = 0 if and only if η = θ and (2.8),

P(τcouple > t) = P
(
ρ
(
X1

t ,X
2
t

)
> 0

) = P
(
ρ
(
X1

t ,X
2
t

) ≥ 1
)
. (2.13)

From Markov’s inequality and (2.12) we deduce

P(τcouple > t) ≤ E
(
ρ
(
X1

t ,X
2
t

)) ≤ Me−t/α. (2.14)

Since the upper bound in (2.14) is uniform in X1
0 and X2

0, according to (2.9) we get

d(t) ≤ Me−t/α. (2.15)

Thus, given ε > 0, if t ≥ α ln(M/ε) then d(t) ≤ ε, so that tε ≤ α ln(M/ε). �
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2.3. A colored coupling

In order to prove Theorem 1, we introduce a dynamics on the set of the possible distributions of the k particles in the
m energy levels. Therefore we define the set of the configurations of k distinguishable particles in m energy levels

Ω := {
ω : {1; . . . ; k} → {1; . . . ;m}} (2.16)

and for every such distribution ω, we define ξ(ω) = (k1, . . . , km) ∈ Xk,m by

∀i ∈ {1; . . . ;m}, ki :=
k∑

x=1

1{ω(x)=i}. (2.17)

We will couple two dynamics ω1 and ω2 on Ω , then we will work with the coupling (ξ(ω1), ξ(ω2)). We will build
the coupling (ω1,ω2) thanks to the coloring we now introduce.

At step t , a red–blue coloring of (ω1
t ,ω

2
t ) is a couple of functions C1,C2 : {1; . . . ; k} → {blue; red} such that for

all energy level i ∈ {1; . . . ;m}, the number of blue particles in the level i is the same in both distributions, i.e., if |A|
refers to the cardinality of the set A,∣∣{x: C1(x) = blue,ω1

t (x) = i
}∣∣ = ∣∣{x: C2(x) = blue,ω2

t (x) = i
}∣∣ (2.18)

and an energy level cannot contain red particles in both distributions

C1(x) = red ⇒ ∀y,
(
ω2

t (y) = ω1
t (x) ⇒ C2(y) = blue

)
, (2.19)

C2(x) = red ⇒ ∀y,
(
ω1

t (y) = ω2
t (x) ⇒ C1(y) = blue

)
. (2.20)

As a consequence of (2.18), there exists a one-to-one correspondence

Φ :
{
x: C1(x) = blue

} → {
x: C2(x) = blue

}
(2.21)

such that for all x, ω2
t (Φ(x)) = ω1

t (x). Since the number of blue particles is the same in both distributions, so is the
number of red particles. Moreover, ξ(ω1

t ) = ξ(ω2
t ) if and only if all particles are blue. Then we are willing to provide

a coupling (ω1,ω2) for which the number of red particles is non-increasing. This number does not depend on the
red–blue coloring and at any time t we will call it ρt . Writing ξ(ω1

t ) = (k1
1, . . . , k1

m) and ξ(ω2
t ) = (k2

1, . . . , k2
m) we

have the identities

ρt = 1

2

m∑
i=1

∣∣k1
i − k2

i

∣∣ =
m∑

i=1

[
k1
i − k2

i

]+ =
m∑

i=1

[
k2
i − k1

i

]+
. (2.22)

We are now ready to build our coupling (ω1,ω2). Given (ω1
t ,ω

2
t ) and a red–blue coloring (C1,C2) at step t (such

a coloring certainly exists for any couple of distributions (ω1
t ,ω

2
t )), let x1 be a uniform random integer in {1; . . . ; k}.

• If C1(x1) = blue: then we set x2 = Φ(x1) where Φ is provided by (2.21).
• If C1(x1) = red: let x2 be a uniform random integer in {x: C2(x) = red}.

Lemma 2.3.1. The random integer x2 has a uniform distribution on the set {1; . . . ; k}.

Proof. We write

P
(
x2 = y

) =
k∑

x=1

P
(
x2 = y|x1 = x

)
P

(
x1 = x

)
(2.23)

=
∑

x:C1(x)=blue

1{y=Φ(x)}
1

k
+

∑
x:C1(x)=red

1{C2(y)=red}
ρt

1

k
(2.24)
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= 1{C2(y)=blue}
k

+ 1{C2(y)=red}
ρt

ρt

k
(2.25)

= 1

k
. (2.26)

�

We then choose an energy level j uniformly in {1; . . . ;m} and we write ξ(ω1
t ) = (k1

1, . . . , k1
m) and ξ(ω2

t ) =
(k2

1, . . . , k2
m).

• If C1(x1) = blue: then C2(x2) = blue, and x1, x2 are in the same energy level i := ω1
t (x

1) = ω2
t (x

2). Let a �= b ∈
{1;2} such that ψi(k

a
i − 1) − ψj(k

a
j ) ≤ ψi(k

b
i − 1) − ψj(k

b
j ). Then,

pa := exp
{−[

ψi

(
ka
i − 1

) − ψj

(
ka
j

)]+}
(2.27)

≥ exp
{−[

ψi

(
kb
i − 1

) − ψj

(
kb
j

)]+} =: pb. (2.28)

Let U be a uniform random variable on [0;1).
– If U < pb: then we set ωa

t+1(x) = ωa
t (x) for all x �= xa , ωa

t+1(x
a) = j , ωb

t+1(x) = ωb
t (x) for all x �= xb

and ωb
t+1(x

b) = j . Then ξ(ωa
t+1) = (ξ(ωa

t ))ij and ξ(ωb
t+1) = (ξ(ωb

t ))
ij , and for any red–blue coloring of

(ω1
t+1,ω

2
t+1) the number of red particles ρt+1 remains the same (since both particles x1 and x2 have moved

together).
– If pb ≤ U < pa : then we set ωa

t+1(x) = ωa
t (x) for all x �= xa , ωa

t+1(x
a) = j and ωb

t+1(x) = ωb
t (x) for all x.

Then ξ(ωa
t+1) = (ξ(ωa

t ))ij and ξ(ωb
t+1) = ξ(ωb

t ). The only situation in which the number of red particles could
increase is the following: ka

j ≥ kb
j and ka

i ≤ kb
i . Since ψi and ψj are non-increasing, this would imply pa ≤ pb

that contradicts pb ≤ U < pa . Then, ρt+1 ≤ ρt for any red–blue coloring of (ω1
t+1,ω

2
t+1).

– If U ≥ pa : then we set ωa
t+1 = ωa

t and ωb
t+1 = ωb

t . Then ξ(ωa
t+1) = ξ(ωa

t ), ξ(ωb
t+1) = ξ(ωb

t ) and ρt+1 = ρt .
• If C1(x1) = red: then C2(x2) = red, and we define i1 := ω1

t (x
1) and i2 := ω2

t (x
2). Note that according to (2.19),

i1 �= i2. Let then V 1,V 2 be two independent uniform random variables on [0;1).
– If V 1 < exp{−[ψi1(k1

i1 − 1)−ψj(k
1
j )]+} then we set ω1

t+1(x) = ω1
t (x) for all x �= x1 and ω1

t+1(x
1) = j and then

ξ(ω1
t+1) = (ξ(ω1

t ))
ij ; otherwise we leave ω1

t+1 = ω1
t .

– If V 2 < exp{−[ψi2(k2
i2 − 1)−ψj(k

2
j )]+} then we set ω2

t+1(x) = ω2
t (x) for all x �= x2 and ω2

t+1(x
2) = j and then

ξ(ω2
t+1) = (ξ(ω2

t ))
ij ; otherwise we leave ω2

t+1 = ω2
t .

Whether red particles move or not, the number of red particles cannot increase, so it is clear that ρt+1 ≤ ρt .

We conclude

Proposition 2.3.2. (ρt )t∈N is a non-increasing process.

and claim

Proposition 2.3.3. The process (ξ(ω1), ξ(ω2)) is a coupling for the Markov chain with transition matrix p.

Proof. Writing ξ(ω1
t ) = η and given i, j ∈ {1; . . . ;m},

P
(
ξ
(
ω1

t+1

) = ηij
)

= P
(
ξ
(
ω1

t+1

) = ηij |C1(x1) = blue
)
P

(
C1(x1) = blue

)
+ P

(
ξ
(
ω1

t+1

) = ηij |C1(x1) = red
)
P

(
C1(x1) = red

)
. (2.29)

We have

P
(
C1(x1) = red

) = 1 − P
(
C1(x1) = blue

) = ρt

k
(2.30)
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and

P
(
ξ
(
ω1

t+1

) = ηij |C1(x1) = blue
)

= P
(
ω1

t

(
x1) = i|C1(x1) = blue

) × 1

m
× P(U < p1) (2.31)

= k1
i ∧ k2

i

(k − ρt )m
exp

{−[
ψi

(
k1
i − 1

) − ψj

(
k1
j

)]+}
, (2.32)

P
(
ξ
(
ω1

t+1

) = ηij |C1(x1) = red
)

= P
(
ω1

t

(
x1) = i|C1(x1) = red

) × 1

m
× P

(
V 1 < p1

)
(2.33)

= [k1
i − k2

i ]+
ρtm

exp
{−[

ψi

(
k1
i − 1

) − ψj

(
k1
j

)]+}
(2.34)

which finally leads to

P
(
ξ
(
ω1

t+1

) = ηij
) = k1

i

km
exp

{−[
ψi

(
k1
i − 1

) − ψj

(
k1
j

)]+} = p
(
η,ηij

)
. (2.35)

Then, P(ξ(ω1
t+1) = ηij |ω1

t ,ω
2
t ) depends on ξ(ω1

t ) only, which means that ξ(ω1) is a Markov chain. Besides, according
to (2.35) its transition matrix is p. Finally, by Lemma 2.3.1, the same is true for ξ(ω2). �

From now on, we will write X1
t := ξ(ω1

t ) and X2
t := ξ(ω2

t ). The previous proposition ensures that (X1,X2) is
a coupling for the dynamics with transition matrix p.

2.4. Estimating the coupling time

We will use Proposition 2.2.1. Since (ρt )t∈N is non-increasing and ρt = 0 if and only if X1
t = X2

t , all we have to do is
to estimate from below the probability of the event {ρt+1 < ρt }.
Proposition 2.4.1. If at step t of the coupled dynamics (ω1,ω2) we assume that red particles have been chosen, i.e.,
C1(x1) = red = C2(x2), then there is a choice of j ∈ {i1; i2} for which the number of red particles decreases with
probability 1, where i1 (resp. i2) still refers to ω1

t (x
1) (resp. ω2

t (x
2)).

Proof. If the inequalities

exp
{−[

ψi1

(
k1
i1 − 1

) − ψi2

(
k1
i2

)]+}
< 1, (2.36)

exp
{−[

ψi2

(
k2
i2 − 1

) − ψi1

(
k2
i1

)]+}
< 1 (2.37)

hold together, then ψi1(k1
i1 − 1) > ψi2(k1

i2) and ψi2(k2
i2 − 1) > ψi1(k2

i1). Besides, since C1(x1) = red, according to

(2.19) k1
i1 > k2

i1 from which we get k1
i1 − 1 ≥ k2

i1 and, since ψi1 is non-increasing, ψi1(k1
i1 − 1) ≤ ψi1(k2

i1). Likewise,

since C2(x2) = red we have ψi2(k2
i2 − 1) ≤ ψi2(k1

i2). We finally may write

ψi1

(
k1
i1 − 1

)
> ψi2

(
k1
i2

) ≥ ψi2

(
k2
i2 − 1

)
> ψi1

(
k2
i1

) ≥ ψi1

(
k1
i1 − 1

)
(2.38)

which is absurd. As a result, either (2.36) or (2.37) is false. For instance let us assume that (2.36) is false, then if
j = i2, with probability 1 we have ω1

t+1(x) = ω1
t (x) for all x �= x1, ω1

t+1(x
1) = i2 �= ω1

t (x
1) and ω2

t+1 = ω2
t . Then,

the number of red particles for any red–blue coloring of (ω1
t+1,ω

2
t+1) is exactly ρt+1 = ρt − 1. �

It follows

Corollary 2.4.2. At step t , if ρt > 0, the probability for ρt+1 to be ρt − 1 is at least ρt/km.
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Consequently, and owing to the fact that ρt cannot increase, we have the inequality E(ρt+1 − ρt |X1
t ,X

2
t ) ≤

−P(ρt+1 = ρt − 1|X1
t ,X

2
t ) from which we deduce

E
(
ρt+1|X1

t ,X
2
t

) ≤
(

1 − 1

km

)
ρt . (2.39)

Then we can apply Proposition 2.2.1 to ρ(X1
t ,X

2
t ) = ρt with M = k and α = km, which finally proves Theorem 1.

Remark. Adding “moderate disorder hypotheses” we can gain a lot, depending on the specific model we consider.
For example in the case of our simple exclusion dynamics, i.e., for the Markov chain associated with the Fermi
statistics when all the nj ’s are equal to 1, we can gain a factor of order m. We can indeed assume that k/m ≤ 1/2
(if not, we consider a dynamics on the vacancies rather than on the particles as mentioned in Section 1.4) and, if, for
example, ν derives from an homogeneous product measure, i.e., ψi = ψj for all i and j , then there are much more
than one choice for j for which the number of red particles will decrease with probability 1 when red particles were
chosen: any of the more than m/2 vacant sites in X1

t or X2
t will do the job. In this case we gain a factor m/2, first

in Corollary 2.4.2, then in the final estimate. More generally, if the functions |ψi − ψj | are uniformly bounded (this
is a moderate disorder hypothesis), then, when red particles are chosen together with one of these more than m/2
vacant sites, the probability that the number of red particles decrease is bounded away from zero: once again we gain
a factor of order m.

3. Proof of Theorem 2

We now work with the dynamics defined by (1.35)–(1.36) and we assume δ > 0. First, the reversibility of this dynamics
with respect to ν still holds, with exactly the same computation as in Section 2.1. However, it is no longer possible to
work with an underlying process ωt ∈ Ω since the factor kδ

i cannot stand for a number of particles as soon as δ < 1.
Therefore we need to adapt the coupling (X1,X2) directly on Xk,m.

3.1. Generalizing the previous coupling

At step t , let us assume X1
t = (k1

1, . . . , k1
m) ∈ Xk,m and X2

t = (k2
1, . . . , k2

m) ∈ Xk,m. We define the following sets:

R1 := {
i ∈ {1; . . . ;m}: k1

i > k2
i

}
, (3.1)

R2 := {
i ∈ {1; . . . ;m}: k2

i > k1
i

}
, (3.2)

B := {
i ∈ {1; . . . ;m}: k1

i = k2
i

}
(3.3)

and the following quantities:

w1 :=
∑
i∈R1

(
k1
i

)δ
, w′

1 :=
∑
i∈R2

(
k1
i

)δ
, (3.4)

w2 :=
∑
i∈R2

(
k2
i

)δ
, w′

2 :=
∑
i∈R1

(
k2
i

)δ
, (3.5)

wB :=
∑
i∈B

(
k1
i

)δ =
∑
i∈B

(
k2
i

)δ
. (3.6)

Finally we define

ρt := 1

2

m∑
i=1

∣∣k1
i − k2

i

∣∣ =
m∑

i=1

[
k1
i − k2

i

]+ =
m∑

i=1

[
k2
i − k1

i

]+
. (3.7)
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Keeping in mind the previous coloring, R1 (resp. R2) is the set of sites in which there are red particles for the
first (resp. the second) configuration, B is the set of sites in which there are only blue particles or no particles for
both configurations, w1 (resp. w2) is proportional to the probability to choose a site for the first (resp. the second)
configuration in which there are red particles, w′

1 (resp. w′
2) is proportional to the probability to choose a site for

the first (resp. the second) configuration in which there are only blue particles while there are red particles in the
second (resp. the first) configuration, wB is proportional to the probability to choose a site in which there are only
blue particles for both configurations, and lδ − (wB + w1 + w′

1) (resp. lδ − (wB + w2 + w′
2)) is proportional to the

probability not to choose any site for the first (resp. the second) configuration, and it can be positive as soon as δ < 1.
Finally, ρt still stands for the number of red particles and it is clear that ρt = 0 if and only if X1

t = X2
t .

N.B. In the remaining part of this subsection, we assume w1 + w′
1 ≥ w2 + w′

2 in order to not overload the notations
and not increase the number of cases to investigate. Obviously, the case w1 + w′

1 ≤ w2 + w′
2 is exactly symmetric.

Let I be a uniform random variable on [0; lδ).
(i) If I < wB : then there exists a unique i ∈ B such that

∑
i′∈B;i′<i

(
k1
i′
)δ ≤ I <

∑
i′∈B;i′≤i

(
k1
i′
)δ (3.8)

and we set i1 = i2 = i.

Remark. We then have, for all i ∈ {1; . . . ;m},

P
(
i1 = i|(i)) = 1{i∈B}

(k1
i )

δ

wB

, (3.9)

P
(
i2 = i|(i)) = 1{i∈B}

(k1
i )

δ

wB

= 1{i∈B}
(k2

i )
δ

wB

. (3.10)

(ii) If wB ≤ I < wB + w′
1: then there exists a unique i ∈ R2 such that

∑
i′∈R2;i′<i

(
k1
i′
)δ ≤ I − wB <

∑
i′∈R2;i′≤i

(
k1
i′
)δ (3.11)

and we set i1 = i2 = i.

Remark. We then have, for all i ∈ {1; . . . ;m},

P
(
i1 = i|(ii)) = 1{i∈R2}

(k1
i )

δ

w′
1

, (3.12)

P
(
i2 = i|(ii)) = 1{i∈R2}

(k1
i )

δ

w′
1

. (3.13)

(iii) If wB + w′
1 ≤ I < wB + w′

1 + w1: then there exists a unique i ∈ R1 such that

∑
i′∈R1;i′<i

(
k1
i′
)δ ≤ I − wB − w′

1 <
∑

i′∈R1;i′≤i

(
k1
i′
)δ

. (3.14)
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We set i1 = i and we define u := I − wB − w′
1 − ∑

i′∈R1;i′<i(k
1
i′)

δ , so that 0 ≤ u < (k1
i )

δ . Notice that since i ∈ R1,

k1
i > k2

i . If u < (k2
i )

δ then we set i2 = i. Otherwise, for all i′ ∈ R2 we write k̄i′ := ∑
�∈R2;�<i′(k

1
� )

δ and we denote by
T the disjoint union of intervals

T :=
{ ⋃

i′∈R2

[
k̄i′ +

(
k1
i′
)δ; k̄i′ +

(
k2
i′
)δ)} ∪ [

w2 + w′
2;w1 + w′

1

)
. (3.15)

Let I ′ be a uniform random variable on T . If there exists i′ ∈ R2 such that I ′ ∈ [k̄i′ + (k1
i′)

δ; k̄i′ + (k2
i′)

δ) then we set
i2 = i′. Else we do not define i2.

Remark. We then have, for all i ∈ {1; . . . ;m},

P
(
i1 = i|(iii)) = 1{i∈R1}

(k1
i )

δ

w1
(3.16)

and for all i′ ∈ {1; . . . ;m},
P

(
i2 = i′|(iii))
= 1{i′∈R1}

(k2
i′)

δ

w1

+ 1{i′∈R2}
∑
i∈R1

(k1
i )

δ − (k2
i )

δ

w1
× (k2

i′)
δ − (k1

i′)
δ

λ(T )
, (3.17)

where

λ(T ) :=
∑
i′∈R2

((
k2
i′
)δ − (

k1
i′
)δ) + (

w1 + w′
1

) − (
w2 + w′

2

)
(3.18)

= w1 − w′
2 (3.19)

so that

P
(
i2 = i′|(iii)) = 1{i′∈R1}

(k2
i′)

δ

w1
+ 1{i′∈R2}

(k2
i′)

δ − (k1
i′)

δ

w1
. (3.20)

(iv) If I ≥ wB + w1 + w′
1 (this case cannot occur when δ = 1): then we do not define i1 and i2.

Before going ahead with the definition of our coupling we note, as a direct consequence of our remarks in (i), (ii),
(iii) and of of the fact that I has a uniform distribution:

Proposition 3.1.1. For all i ∈ {1; . . . ;m}, P(i1 = i|X1
t ,X

2
t ) = (k1

i )
δ/ lδ and P(i2 = i|X1

t ,X
2
t ) = (k2

i )
δ/ lδ .

We then choose an integer j ∈ {1; . . . ;m} with uniform law and we distinguish once again between our four
previous cases.

(i) If i1 ∈ B: then i2 = i1, we just write i1 = i2 = i. Then k1
i = k2

i . Thus, let a, b ∈ {1;2} such that a �= b and

ka
j ≤ kb

j . Since both ψ
[δ]
i and ψ

[δ]
j are non-increasing,

pa := exp
{−[

ψ
[δ]
i

(
ka
i − 1

) − ψ
[δ]
j

(
ka
j

)]+}
(3.21)

≥ exp
{−[

ψ
[δ]
i

(
kb
i − 1

) − ψ
[δ]
j

(
kb
j

)]+} =: pb. (3.22)

Let U be a uniform random variable on [0;1).

– If U < pb: we set Xa
t+1 = (Xa

t )ij and Xb
t+1 = (Xb

t )
ij .
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– If pb ≤ U < pa : we set Xa
t+1 = (Xa

t )ij and Xb
t+1 = Xb

t .
– If pa ≤ U : we set Xa

t+1 = Xa
t and Xb

t+1 = Xb
t .

In any of these cases, we certainly have ρt+1 = ρt .
(ii) If i1 ∈ R2: then i2 = i1, we just write i1 = i2 = i. Let a, b ∈ {1;2} such that a �= b and ψ

[δ]
i (ka

i − 1) −
ψ

[δ]
j (ka

j ) ≤ ψ
[δ]
i (kb

i − 1) − ψ
[δ]
j (kb

j ), so that

pa := exp
{−[

ψ
[δ]
i

(
ka
i − 1

) − ψ
[δ]
j

(
ka
j

)]+}
(3.23)

≥ exp
{−[

ψ
[δ]
i

(
kb
i − 1

) − ψ
[δ]
j

(
kb
j

)]+} =: pb. (3.24)

Let U be a uniform random variable on [0;1).

– If U < pb: we set Xa
t+1 = (Xa

t )ij and Xb
t+1 = (Xb

t )
ij .

– If pb ≤ U < pa : we set Xa
t+1 = (Xa

t )ij and Xb
t+1 = Xb

t .
– If pa ≤ U : we set Xa

t+1 = Xa
t and Xb

t+1 = Xb
t .

In the last case we obviously have ρt+1 = ρt . In the first case the particles move together and ρt+1 = ρt . In the
second case the number of red particles could increase only if ka

i ≤ kb
i and ka

j ≥ kb
j , but, since ψ

[δ]
i and ψ

[δ]
j are

non-increasing, this would contradict pa > pb . As a consequence we have ρt+1 ≤ ρt in all the three cases.
(iii) If i1 ∈ R1: there are three cases for i2. Either i2 = i1 = i and this case is the symmetric of (ii). Or i2 is

randomly chosen in R2, and we define

p1 := exp
{−[

ψ
[δ]
i1

(
k1
i1 − 1

) − ψ
[δ]
j

(
k1
j

)]+}
, (3.25)

p2 := exp
{−[

ψ
[δ]
i2

(
k2
i2 − 1

) − ψ
[δ]
j

(
k2
j

)]+}
. (3.26)

Or else i2 is not defined, and we set p2 := 0 still defining p1 by (3.25). Let then V 1, V 2 be independent uniform
random variables on [0;1).

– If V 1 < p1: we set X1
t+1 = (X1

t )
i1j , else we set X1

t+1 = X1
t .

– If V 2 < p2: we set X2
t+1 = (X2

t )
i2j , else we set X2

t+1 = X2
t .

In the first case we have ρt+1 ≤ ρt as previously. In the last two cases we also have ρt+1 ≤ ρt since only particles
from R1 in the first configuration and from R2 in the second configuration can move.

(iv) If i1 and i2 are not defined: then we simply set (X1
t+1,X

2
t+1) = (X1

t ,X
2
t ) and we have ρt+1 = ρt .

In any of the previous cases, once i1, i2 and j have been defined, the probability for X1
t+1 (resp. X2

t+1) to be (X1
t )

i1j

(resp. (X2
t )

i2j ) is exp{−[ψ [δ]
i1 (k1

i1 − 1) − ψ
[δ]
j (k1

j )]+} (resp. exp{−[ψ [δ]
i2 (k2

i2 − 1) − ψ
[δ]
j (k2

j )]+}). Thus, according to
Proposition 3.1.1, the fact that j is uniformly chosen in {1; . . . ;m} and our study on the variation of ρ we conclude:

Proposition 3.1.2. The process (X1,X2) is a coupling for the dynamics defined by (1.35)–(1.36) and such that (ρt )t∈N

is non-increasing.

3.2. Estimating the coupling time

Similarly to the proof of Theorem 1 we will use Proposition 2.2.1: since (ρt )t∈N is non-increasing it will be enough
to give a lower bound for the probability of {ρt+1 < ρt }.

Proposition 3.2.1. If at step t of the coupled dynamics (X1,X2), we assume that “red particles have been chosen,”
i.e., i1 ∈ R1 and i2 ∈ R2, then, there is a choice of j ∈ {i1; i2} for which the number of red particles decreases with
probability 1.
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Proof. Assuming i1 ∈ R1 and i2 ∈ R2 yields k1
i1 > k2

i1 and k1
i2 < k2

i2 . Using exactly the same argument as for Propo-

sition 2.4.1 we prove that either exp{−[ψ [δ]
i1 (k1

i1 − 1) − ψ
[δ]
i2 (k1

i2)]+} = 1 or exp{−[ψ [δ]
i2 (k2

i2 − 1) − ψ
[δ]
i1 (k2

i1)]+} = 1.
Eventually, if one red particle in some configuration moves to a site with a red particle in the other configuration, then
both particles turn blue and the number of red particles decreases by one. �

Corollary 3.2.2. At step t , the probability for ρt+1 to be ρt − 1 is at least δkδ−1ρt/mlδ .

Proof. The probability to choose i1 ∈ R1 and i2 ∈ R2 is

P
(
i1 ∈ R1, i

2 ∈ R2
)

=
∑
i′∈R2

∑
i∈R1

P
(
i2 = i′|i1 = i

) × P
(
i1 = i

)
(3.27)

=
∑
i′∈R2

∑
i∈R1

(k1
i )

δ − (k2
i )

δ

(k1
i )

δ

(k2
i′)

δ − (k1
i′)

δ

λ(T )
× (k1

i )
δ

lδ
(3.28)

= 1

lδ

∑
i′∈R2

((
k2
i′
)δ − (

k1
i′
)δ)

. (3.29)

Since, for any concave function f : R+ → R and any s ∈ N \ {0}, (z1, . . . , zs) ∈ R
s+ �→ f (

∑
i zi) − ∑

i f (zi) is non-
increasing in all its s variables (as a consequence of the slope inequalities), by concavity of z �→ zδ and using the fact
that, for all i′ ∈ R2, k2

i′ > k1
i′ we get

P
(
i1 ∈ R1, i

2 ∈ R2
) ≥ 1

lδ

[( ∑
i′∈R2

k2
i′

)δ

−
( ∑

i′∈R2

k1
i′

)δ]
(3.30)

= 1

lδ

[(
ρt +

∑
i′∈R2

k1
i′

)δ

−
( ∑

i′∈R2

k1
i′

)δ]
. (3.31)

Using the same property of concave functions on R
+ (with s = 2) and the fact that

∑
i′∈R2

k1
i′ ≤ k − ρt , then using

once again the concavity of z �→ zδ , we write

P
(
i1 ∈ R1, i

2 ∈ R2
) ≥ 1

lδ

[
kδ − (k − ρt )

δ
] ≥ δkδ−1ρt

lδ
(3.32)

so that, by the previous proposition,

P
(
ρt+1 = ρt − 1|X1

t ,X
2
t

) ≥ δkδ−1ρt

mlδ
. (3.33)

�

As a consequence

E
(
ρt+1|X1

t ,X
2
t

) ≤
(

1 − δ

km(k ∧ m)1−δ

)
ρt (3.34)

and, by Proposition 2.2.1, this finally proves Theorem 2.

Simulation appendix

In this appendix we report on simulations for the temporal evolution of d(t) defined in (1.10) as well as the dependency
in β of the mixing time tε defined in (1.9) with ε = 0.1 in the context of the Fermi statistics ν associated with k = 50
particles among m = 20 energy levels with two different profiles.
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Fig. 1. Degeneracies of the energy levels for case 1, in semi-logarithmic representation for the second picture.

Fig. 2. Degeneracies of the energy levels for case 2, with shifted and rescaled axis for the second picture.

• In the first case we chose vj = j/20 and nj = 2j for 1 ≤ j ≤ m so that n = ∑
j 2j = 221 − 2. See Fig. 1.

• In the second case we chose the same vj ’s, the same volume n = 221 − 2 and we chose the degeneracies according
two a multinomial law with parameters n, 1/20, . . . , 1/20. See Fig. 2.

We were then interested in

d(t) = max
η∈Xk,m

∥∥pt(η0, ·) − ν
∥∥

TV = max
η∈Xk,m

1

2

∑
η∈Xk,m

∣∣pt(η0, η) − ν(η)
∣∣ (A.1)

for t ≥ 0. The cardinality of Xk,m being very large (equal to
(69

19

) � 5 × 1016 in case 2), one faces three difficulties
with such a formula:

(i) One cannot compute ν(η) and pt(η0, η) for given η and η0.
(ii) The sum in (A.1) contained too many terms to be computed.

(iii) It is not possible to try all the possible η0 before taking the maximum in (A.1).

We addressed the first difficulty by replacing pt(η0, ·) by the empirical measure

μN
t := 1

N

N∑
l=1

δXl
t

(A.2)

computed with a large number N of simulated independent copies (Xl
t )t∈N of our Markov chain starting from η0 and,

using Theorem 1, by replacing ν by

νN := 1

2T

2T∑
t=T +1

μ′
t
N + μ′′

t
N (A.3)

with T := �km ln(k/ε)� and where μ′
t
N and μ′′

t
N are independently computed like μN

t , starting from two different
configurations. We addressed the second difficulty by looking at a coarse grained version X̄k,m of Xk,m through the
free entropy φ. More precisely, with IN = [φ−, φ+] the smallest interval containing the support of φ(νN) = νN ◦φ−1
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we divided IN into M intervals of length � = (φ+ − φ−)/M , we extended this partition of IN into a partition of R

in intervals of length � and grouped in a same class the configurations η ∈ Xk,m that fall into a same interval. (For
possible cases where φ− = φ+, we used a partition of R into intervals of length 10−6.) With φ̄ the canonical projection
from Xk,m to X̄k,m we could then compute ‖φ̄(μN

t ) − φ̄(νN)‖TV rather than ‖μN
t − νN‖TV. Note that

∥∥φ̄
(
μN

t

) − φ̄
(
νN

)∥∥
TV ≤ ∥∥μN

t − νN
∥∥

TV, (A.4)

and we also have, for large M and as soon as φ is an injection from Xk,m to R,

∥∥μN
t − νN

∥∥
TV = ∥∥φ̄

(
μN

t

) − φ̄
(
νN

)∥∥
TV + o(1). (A.5)

As far as the third difficulty was concerned we underestimated

d̄N (t) = max
η0∈Xk,m

∥∥φ̄
(
μN

t

) − φ̄
(
νN

)∥∥
TV (A.6)

by making a guess on a particular configuration η0 for which ‖φ̄(μN
t ) − φ̄(νN)‖TV could be of the order of d̄N (t).

We simply took an η0 for which we could have say, for all β , that it was “very far from typical configurations.” We
first took η0 = (0, . . . ,0, k) since typical configurations are concentrated on the low energy levels when β is large and
have their occupation numbers kj distributed like the degeneracies nj when β is small. Since this last point tends to
show that in case 1 our specific η0 is “not so far” from typical equilibrium configurations (we will come back on this
point later), we also considered a different η0, that one for which the high energy levels are empty and the low energy
levels are saturated or as close to saturation as possible:

η0 =
{

(2,4,8,16,20,0, . . . ,0) in case 1,
(50,0, . . . ,0) in case 2.

(A.7)

Then we simply took the maximum of the two quantities ‖φ̄(μN
t ) − φ̄(νN)‖TV computed, in each case, with these

two specific choices.
Summing up, we approximated d(t) by

d̄N
0 (t) = max

η0∈X 0
k,m

∥∥φ̄
(
μN

t

) − φ̄
(
νN

)∥∥
TV, (A.8)

where X 0
k,m is the two configuration set described above. We chose N = 1024 and M = √

N = 32 and we plotted

for different temperatures a graphical representation of the law of φ̄(νN) and the temporal evolution of d̄N
0 (t) for

0 ≤ t ≤ 2T . See Figs 3 to 7 for case 1 and Figs 8 to 12 for case 2.

Fig. 3. Probability distribution function of φ̄(νN ) and temporal evolution of d̄N
0 (t) for case 1 and β = 0.



Sampling the Fermi statistics 809

Fig. 4. Probability distribution function of φ̄(νN ) and temporal evolution of d̄N
0 (t) for case 1 and β = 4.

Fig. 5. Probability distribution function of φ̄(νN ) and temporal evolution of d̄N
0 (t) for case 1 and β = 16.

Fig. 6. Probability distribution function of φ̄(νN ) and temporal evolution of d̄N
0 (t) for case 1 and β = 63.

Fig. 7. Probability distribution function of φ̄(νN ) and temporal evolution of d̄N
0 (t) for case 1 and β = 1000.

For each temperature we get in each case an estimation t̂ε of tε . Estimating tε in this way for 51 temperatures (β = 0
included) we show in Fig. 13 the graphical representations of the simulated dependency of t̂ε on β > 0 together with
our upper bound from Theorem 1.
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Fig. 8. Probability distribution function of φ̄(νN ) and temporal evolution of d̄N
0 (t) for case 2 and β = 0.

Fig. 9. Probability distribution function of φ̄(νN ) and temporal evolution of d̄N
0 (t) for case 2 and β = 4.

Fig. 10. Probability distribution function of φ̄(νN ) and temporal evolution of d̄N
0 (t) for case 2 and β = 16.

Fig. 11. Probability distribution function of φ̄(νN ) and temporal evolution of d̄N
0 (t) for case 2 and β = 63.

We can now conclude with a few comments. First, with such a procedure, tε is essentially underestimated. Indeed,
except for the replacement of pt(η0, ·) and ν by μN

t and νN our successive approximations underestimated d(t)

then tε . As a consequence we recover with case 2 that km ln(k/ε) is the best upper bound on tε that is uniform over
the disorder.

Second, we note that β can be seen as a tuning parameter for the disorder. We recover that our theoretical estimate
on tε can be improved by a factor of order m in weak disorder situations.
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Fig. 12. Probability distribution function of φ̄(νN ) and temporal evolution of d̄N
0 (t) for case 2 and β = 1000.

Fig. 13. Dependency of t̂ε on β in case 1 and 2 respectively (semi-logarithmic representation). The horizontal line stands for our theoretical upper
bound.

Last, it is worth to note that case 1 suggests that tε is not generally decreasing with the temperature. In our pre-
liminary simulations we only considered η0 = (0, . . . ,0,50) to estimate the mixing time. Then we feared that our
non-monotonic estimation could be an artefact of our simulation. This led us to introduce the alternative saturated low
level starting configuration, confirming in that way the non-monotonicity.
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