570 research outputs found

    General Relativistic Simulations of Jet Formation in a Rapidly Rotating Black Hole Magnetosphere

    Full text link
    To investigate the formation mechanism of relativistic jets in active galactic nuclei and micro-quasars, we have developed a new general relativistic magnetohydrodynamic code in Kerr geometry. Here we report on the first numerical simulation of jet formation in a rapidly-rotating (a=0.95) Kerr black hole magnetosphere. We study cases in which the Keplerian accretion disk is both co-rotating and counter-rotating with respect to the black hole rotation. In the co-rotating disk case, our results are almost the same as those in Schwarzschild black hole cases: a gas pressure-driven jet is formed by a shock in the disk, and a weaker magnetically-driven jet is also generated outside the gas pressure-driven jet. On the other hand, in the counter-rotating disk case, a new powerful magnetically-driven jet is formed inside the gas pressure-driven jet. The newly found magnetically-driven jet in the latter case is accelerated by a strong magnetic field created by frame dragging in the ergosphere. Through this process, the magnetic field extracts the energy of the black hole rotation.Comment: Co-rotating and counter-rotating disks; 8 pages; submitted to ApJ letter

    Developing Tools for Multimessenger Gravitational Wave Astronomy

    Full text link
    We present work in progress to craft open-sourced numerical tools that will enable the calculation of electromagnetic counterparts to gravitational waveforms: the {\tt GiRaFFE} (General Relativistic Force-Free Electrodynamics) code. {\tt GiRaFFE} numerically solves the general relativistic magnetohydrodynamics system of equations in the force-free limit, to model the magnetospheres surrounding compact binaries, in order (1) to characterize the nonlinear interaction between the source and its surrounding magnetosphere, and (2) to evaluate the electromagnetic counterparts of gravitational waves, including the production of collimated jets. We apply this code to various configurations of spinning black holes immersed in external magnetic field, in order to both test our implementation, and to explore the effect of strong gravitational field, high spins and of misalignment between the magnetic field lines an black hole spin, on the electromagnetic output and the collimation of Poynting jets. We will extend our work to collisions of black holes immersed in external magnetic field, which are prime candidates for coincident detection in both gravitational and electromagnetic spectra.Comment: 6 pages, 6 figures, MG15 proceeding

    Non-thermal Processes in Black-Hole-Jet Magnetospheres

    Full text link
    The environs of supermassive black holes are among the universe's most extreme phenomena. Understanding the physical processes occurring in the vicinity of black holes may provide the key to answer a number of fundamental astrophysical questions including the detectability of strong gravity effects, the formation and propagation of relativistic jets, the origin of the highest energy gamma-rays and cosmic-rays, and the nature and evolution of the central engine in Active Galactic Nuclei (AGN). As a step towards this direction, this paper reviews some of the progress achieved in the field based on observations in the very high energy domain. It particularly focuses on non-thermal particle acceleration and emission processes that may occur in the rotating magnetospheres originating from accreting, supermassive black hole systems. Topics covered include direct electric field acceleration in the black hole's magnetosphere, ultra-high energy cosmic ray production, Blandford-Znajek mechanism, centrifugal acceleration and magnetic reconnection, along with the relevant efficiency constraints imposed by interactions with matter, radiation and fields. By way of application, a detailed discussion of well-known sources (Sgr A*; Cen A; M87; NGC1399) is presented.Comment: invited review for International Journal of Modern Physics D, 49 pages, 15 figures; minor typos corrected to match published versio

    Scenarios for ultrafast gamma-ray variability in AGN

    Full text link
    We analyze three scenarios to address the challenge of ultrafast gamma-ray variability reported from active galactic nuclei. We focus on the energy requirements imposed by these scenarios: (i) external cloud in the jet, (ii) relativistic blob propagating through the jet material, and (iii) production of high-energy gamma rays in the magnetosphere gaps. We show that while the first two scenarios are not constrained by the flare luminosity, there is a robust upper limit on the luminosity of flares generated in the black hole magnetosphere. This limit depends weakly on the mass of the central black hole and is determined by the accretion disk magnetization, viewing angle, and the pair multiplicity. For the most favorable values of these parameters, the luminosity for 5-minute flares is limited by 2×1043 erg s−12\times10^{43}\rm\,erg\,s^{-1}, which excludes a black hole magnetosphere origin of the flare detected from IC310. In the scopes of scenarios (i) and (ii), the jet power, which is required to explain the IC310 flare, exceeds the jet power estimated based on the radio data. To resolve this discrepancy in the framework of the scenario (ii), it is sufficient to assume that the relativistic blobs are not distributed isotropically in the jet reference frame. A realization of scenario (i) demands that the jet power during the flare exceeds by a factor 10210^2 the power of the radio jet relevant to a timescale of 10810^8 years.Comment: 15 pages, accepted by Ap

    GiRaFFE: An Open-Source General Relativistic Force-Free Electrodynamics Code

    Full text link
    We present GiRaFFE, the first open-source general relativistic force-free electrodynamics (GRFFE) code for dynamical, numerical-relativity generated spacetimes. GiRaFFE adopts the strategy pioneered by McKinney and modified by Paschalidis and Shapiro to convert a GR magnetohydrodynamic (GRMHD) code into a GRFFE code. In short, GiRaFFE exists as a modification of IllinoisGRMHD, a user-friendly, open-source, dynamical-spacetime GRMHD code. Both GiRaFFE and IllinoisGRMHD leverage the Einstein Toolkit's highly-scalable infrastructure to make possible large-scale simulations of magnetized plasmas in strong, dynamical spacetimes on adaptive-mesh refinement (AMR) grids. We demonstrate that GiRaFFE passes a large suite of both flat and curved-spacetime code tests passed by a number of other state-of-the-art GRFFE codes, and is thus ready for production-scale simulations of GRFFE phenomena of key interest to relativistic astrophysics.Comment: 23 pages, 4 figures. Consistent with published versio
    • …
    corecore