539 research outputs found

    Memristors for the Curious Outsiders

    Full text link
    We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their connection to machine learning and neural computation.Comment: Perpective paper for MDPI Technologies; 43 page

    Memristor Neural Network Design

    Get PDF
    Neural network, a powerful learning model, has archived amazing results. However, the current Von Neumann computing system–based implementations of neural networks are suffering from memory wall and communication bottleneck problems ascribing to the Complementary Metal Oxide Semiconductor (CMOS) technology scaling down and communication gap. Memristor, a two terminal nanosolid state nonvolatile resistive switching, can provide energy‐efficient neuromorphic computing with its synaptic behavior. Crossbar architecture can be used to perform neural computations because of its high density and parallel computation. Thus, neural networks based on memristor crossbar will perform better in real world applications. In this chapter, the design of different neural network architectures based on memristor is introduced, including spiking neural networks, multilayer neural networks, convolution neural networks, and recurrent neural networks. And the brief introduction, the architecture, the computing circuits, and the training algorithm of each kind of neural networks are presented by instances. The potential applications and the prospects of memristor‐based neural network system are discussed
    • 

    corecore