7,174 research outputs found

    Deep Contextualized Acoustic Representations For Semi-Supervised Speech Recognition

    Full text link
    We propose a novel approach to semi-supervised automatic speech recognition (ASR). We first exploit a large amount of unlabeled audio data via representation learning, where we reconstruct a temporal slice of filterbank features from past and future context frames. The resulting deep contextualized acoustic representations (DeCoAR) are then used to train a CTC-based end-to-end ASR system using a smaller amount of labeled audio data. In our experiments, we show that systems trained on DeCoAR consistently outperform ones trained on conventional filterbank features, giving 42% and 19% relative improvement over the baseline on WSJ eval92 and LibriSpeech test-clean, respectively. Our approach can drastically reduce the amount of labeled data required; unsupervised training on LibriSpeech then supervision with 100 hours of labeled data achieves performance on par with training on all 960 hours directly. Pre-trained models and code will be released online.Comment: Accepted to ICASSP 2020 (oral

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Reified Context Models

    Full text link
    A classic tension exists between exact inference in a simple model and approximate inference in a complex model. The latter offers expressivity and thus accuracy, but the former provides coverage of the space, an important property for confidence estimation and learning with indirect supervision. In this work, we introduce a new approach, reified context models, to reconcile this tension. Specifically, we let the amount of context (the arity of the factors in a graphical model) be chosen "at run-time" by reifying it---that is, letting this choice itself be a random variable inside the model. Empirically, we show that our approach obtains expressivity and coverage on three natural language tasks

    Sequence Teacher-Student Training of Acoustic Models for Automatic Free Speaking Language Assessment

    Get PDF
    A high performance automatic speech recognition (ASR) system is an important constituent component of an automatic language assessment system for free speaking language tests. The ASR system is required to be capable of recognising non-native spontaneous English speech and to be deployable under real-time conditions. The performance of ASR systems can often be significantly improved by leveraging upon multiple systems that are complementary, such as an ensemble. Ensemble methods, however, can be computationally expensive, often requiring multiple decoding runs, which makes them impractical for deployment. In this paper, a lattice-free implementation of sequence-level teacher-student training is used to reduce this computational cost, thereby allowing for real-time applications. This method allows a single student model to emulate the performance of an ensemble of teachers, but without the need for multiple decoding runs. Adaptations of the student model to speakers from different first languages (L1s) and grades are also explored.Cambridge Assessment Englis
    corecore