4 research outputs found

    Virtual reality for assembly methods prototyping: a review

    Get PDF
    Assembly planning and evaluation is an important component of the product design process in which details about how parts of a new product will be put together are formalized. A well designed assembly process should take into account various factors such as optimum assembly time and sequence, tooling and fixture requirements, ergonomics, operator safety, and accessibility, among others. Existing computer-based tools to support virtual assembly either concentrate solely on representation of the geometry of parts and fixtures and evaluation of clearances and tolerances or use simulated human mannequins to approximate human interaction in the assembly process. Virtual reality technology has the potential to support integration of natural human motions into the computer aided assembly planning environment (Ritchie et al. in Proc I MECH E Part B J Eng 213(5):461–474, 1999). This would allow evaluations of an assembler’s ability to manipulate and assemble parts and result in reduced time and cost for product design. This paper provides a review of the research in virtual assembly and categorizes the different approaches. Finally, critical requirements and directions for future research are presented

    3D digital relief generation.

    Get PDF
    This thesis investigates a framework for generating reliefs. Relief is a special kind of sculptured artwork consisting of shapes carved on a surface so as to stand out from the surrounding background. Traditional relief creation is done by hand and is therefore a laborious process. In addition, hand-made reliefs are hard to modify. Contrasted with this, digital relief can offer more flexibility as well as a less laborious alternative and can be easily adjusted. This thesis reviews existing work and offers a framework to tackle the problem of generating three types of reliefs: bas reliefs, high reliefs and sunken reliefs. Considerably enhanced by incorporating gradient operations, an efficient bas relief generation method has been proposed, based on 2D images. An improvement of bas relief and high relief generation method based on 3D models has been provided as well, that employs mesh representation to process the model. This thesis is innovative in describing and evaluating sunken relief generation techniques. Two types of sunken reliefs have been generated: one is created with pure engraved lines, and the other is generated with smooth height transition between lines. The latter one is more complex to implement, and includes three elements: a line drawing image provides a input for contour lines; a rendered Lambertian image shares the same light direction of the relief and sets the visual cues and a depth image conveys the height information. These three elements have been combined to generate final sunken reliefs. It is the first time in computer graphics that a method for digital sunken relief generation has been proposed. The main contribution of this thesis is to have proposed a systematic framework to generate all three types of reliefs. Results of this work can potentially provide references for craftsman, and this work could be beneficial for relief creation in the fields of both entertainment and manufacturing

    Simulación dinámica y deformaciones de superfícies paramétricas

    Get PDF
    Se desarrolla un modelo basado en NURBS, BSplines4D, de representación de superficies parametrizadas en 4D. El objetivo es la representación y simulación dinámica de superficies deformables basadas en el modelo; se realiza un estudio de las ecuaciones del movimiento, asociando un funcional de energía para medir la deformación de objetos, realizando un estudio riguroso sobre los métodos de integración y de discretización, tanto temporal como espacial, determinando su adecuación para resolver el sistema de ecuaciones diferenciales generado. El movimiento y la simulación de la deformación se realizan exclusivamente usando los puntos de control 4D, obteniendo una eficiencia numérica y computacional excelentes. La determinación del modelo BSplines4D se realiza tras un estudio pormenorizado de los modelos existentes. También se ha utilizado para desarrollar un modelo, N-Scodef, de deformaciones de formas libres (FFD), utilizando deformaciones geométricas basadas en restricciones. Se han establecido las condiciones para aplicar restricciones con trayectorias no rectilíneas, representadas por curvas B-Spline 4D. La deformación se adapta de forma precisa a la forma descrita por las curvasEs desenvolupa un model basat en NURBS, Bsplines4D, de representació de superfícies parametritzades en 4D. L'objectiu és la representació i simulació dinàmica de superfícies deformables basades en el model; es realitza un estudi de les equacions del moviment, associant un funcional d'energia per mesurar la deformació d'objectes, realitzant un estudi rigorós sobre els mètodes d'integració i discretització, tant temporal com espacial, determinant la seva adequació per resoldre el sistema d'equacions diferencials generat. El moviment i la simulació de la deformació es realitzen exclusivament utilitzant els punts de control 4D, obtenint una eficiència numèrica i computacional excel·lents. La determinació del model Bsplines4D es realitza després d'un estudi detallat dels models existents. També s'ha utilitzat per desenvolupar un model, N-Scodef, de deformacions de formes lliures (FFD), utilitzant deformacions geomètriques basades en restriccions. S'han establert les condicions per aplicar restriccions amb trajectòries no rectilínies, representades per corbes B-Spline 4D. La deformació s'adapta de forma precisa a la forma descrita per les corbesBsplines4D, a NURBS based model, is presented. The model allows the representation of 4D parameterized surfaces. The objective is the representation and dynamic simulation of deformable surfaces based on this model; a study of the movement equations has been made, associating to them an energy functional to measure the objects' deformation. A rigorous study on the integration and discretization, both temporal and spatial, is made to evaluate its suitability to solve the system of differential equations generated. The movement and simulation of the deformation is performed only using the 4D control points. An excellent numeric and computational efficiency is achieved. The Bsplines4D model is obtained after a detailed study on the existent models. The model has been also used to develop a free-form deformable (FFD) model, N-Scodef, using geometric constraint-based deformations. The conditions to apply constraints with non rectilinear trajectories, based on 4D B-Spline curves, have been established. The deformations fit precisely to the curves form
    corecore