111 research outputs found

    Existential questions in (relatively) hyperbolic groups {\it and} Finding relative hyperbolic structures

    Full text link
    This arXived paper has two independant parts, that are improved and corrected versions of different parts of a single paper once named "On equations in relatively hyperbolic groups". The first part is entitled "Existential questions in (relatively) hyperbolic groups". We study there the existential theory of torsion free hyperbolic and relatively hyperbolic groups, in particular those with virtually abelian parabolic subgroups. We show that the satisfiability of systems of equations and inequations is decidable in these groups. In the second part, called "Finding relative hyperbolic structures", we provide a general algorithm that recognizes the class of groups that are hyperbolic relative to abelian subgroups.Comment: Two independant parts 23p + 9p, revised. To appear separately in Israel J. Math, and Bull. London Math. Soc. respectivel

    Conjugacy classes of solutions to equations and inequations over hyperbolic groups

    Full text link
    We study conjugacy classes of solutions to systems of equations and inequations over torsion-free hyperbolic groups, and describe an algorithm to recognize whether or not there are finitely many conjugacy classes of solutions to such a system. The class of immutable subgroups of hyperbolic groups is introduced, which is fundamental to the study of equations in this context. We apply our results to enumerate the immutable subgroups of a torsion-free hyperbolic group.Comment: 28 pages; referee's comments incorporated; to appear in the Journal of Topolog

    The Differential Counting Polynomial

    Full text link
    The aim of this paper is a quantitative analysis of the solution set of a system of polynomial nonlinear differential equations, both in the ordinary and partial case. Therefore, we introduce the differential counting polynomial, a common generalization of the dimension polynomial and the (algebraic) counting polynomial. Under mild additional asumptions, the differential counting polynomial decides whether a given set of solutions of a system of differential equations is the complete set of solutions

    Thomas Decomposition of Algebraic and Differential Systems

    Full text link
    In this paper we consider disjoint decomposition of algebraic and non-linear partial differential systems of equations and inequations into so-called simple subsystems. We exploit Thomas decomposition ideas and develop them into a new algorithm. For algebraic systems simplicity means triangularity, squarefreeness and non-vanishing initials. For differential systems the algorithm provides not only algebraic simplicity but also involutivity. The algorithm has been implemented in Maple

    Bounds on the Automata Size for Presburger Arithmetic

    Full text link
    Automata provide a decision procedure for Presburger arithmetic. However, until now only crude lower and upper bounds were known on the sizes of the automata produced by this approach. In this paper, we prove an upper bound on the the number of states of the minimal deterministic automaton for a Presburger arithmetic formula. This bound depends on the length of the formula and the quantifiers occurring in the formula. The upper bound is established by comparing the automata for Presburger arithmetic formulas with the formulas produced by a quantifier elimination method. We also show that our bound is tight, even for nondeterministic automata. Moreover, we provide optimal automata constructions for linear equations and inequations

    Algorithmic Thomas Decomposition of Algebraic and Differential Systems

    Full text link
    In this paper, we consider systems of algebraic and non-linear partial differential equations and inequations. We decompose these systems into so-called simple subsystems and thereby partition the set of solutions. For algebraic systems, simplicity means triangularity, square-freeness and non-vanishing initials. Differential simplicity extends algebraic simplicity with involutivity. We build upon the constructive ideas of J. M. Thomas and develop them into a new algorithm for disjoint decomposition. The given paper is a revised version of a previous paper and includes the proofs of correctness and termination of our decomposition algorithm. In addition, we illustrate the algorithm with further instructive examples and describe its Maple implementation together with an experimental comparison to some other triangular decomposition algorithms.Comment: arXiv admin note: substantial text overlap with arXiv:1008.376
    • …
    corecore