3,270 research outputs found

    General Model Theoretic Semantics for Higher-Order Horn Logic Programming

    Get PDF
    We introduce model-theoretic semantics [6] for Higher-Order Horn logic programming language. One advantage of logic programs over conventional non-logic programs has been that the least fixpoint is equal to the least model, therefore it is associated to logical consequence and has a meaningful declarative interpretation. In simple theory of types [9] on which Higher-Order Horn logic programming language is based, domain is dependent on interpretation [10]. To define T p operator for a logic program P, we need a fixed domain without regard to interpretation which is usually taken to be a set of atomic propositions. We build a semantics where we can fix a domain while changing interpretations. We also develop a fixpoint semantics based on our model, and show that we can get the least fixpoint which is the least model. Using this fixpoint we prove the completeness of the interpreter of our language in [14]

    Nominal Logic Programming

    Full text link
    Nominal logic is an extension of first-order logic which provides a simple foundation for formalizing and reasoning about abstract syntax modulo consistent renaming of bound names (that is, alpha-equivalence). This article investigates logic programming based on nominal logic. We describe some typical nominal logic programs, and develop the model-theoretic, proof-theoretic, and operational semantics of such programs. Besides being of interest for ensuring the correct behavior of implementations, these results provide a rigorous foundation for techniques for analysis and reasoning about nominal logic programs, as we illustrate via examples.Comment: 46 pages; 19 page appendix; 13 figures. Revised journal submission as of July 23, 200

    HoCHC: A Refutationally Complete and Semantically Invariant System of Higher-order Logic Modulo Theories

    Full text link
    We present a simple resolution proof system for higher-order constrained Horn clauses (HoCHC) - a system of higher-order logic modulo theories - and prove its soundness and refutational completeness w.r.t. the standard semantics. As corollaries, we obtain the compactness theorem and semi-decidability of HoCHC for semi-decidable background theories, and we prove that HoCHC satisfies a canonical model property. Moreover a variant of the well-known translation from higher-order to 1st-order logic is shown to be sound and complete for HoCHC in standard semantics. We illustrate how to transfer decidability results for (fragments of) 1st-order logic modulo theories to our higher-order setting, using as example the Bernays-Schonfinkel-Ramsey fragment of HoCHC modulo a restricted form of Linear Integer Arithmetic

    Constructive Provability Logic

    Full text link
    We present constructive provability logic, an intuitionstic modal logic that validates the L\"ob rule of G\"odel and L\"ob's provability logic by permitting logical reflection over provability. Two distinct variants of this logic, CPL and CPL*, are presented in natural deduction and sequent calculus forms which are then shown to be equivalent. In addition, we discuss the use of constructive provability logic to justify stratified negation in logic programming within an intuitionstic and structural proof theory.Comment: Extended version of IMLA 2011 submission of the same titl

    From IF to BI: a tale of dependence and separation

    Full text link
    We take a fresh look at the logics of informational dependence and independence of Hintikka and Sandu and Vaananen, and their compositional semantics due to Hodges. We show how Hodges' semantics can be seen as a special case of a general construction, which provides a context for a useful completeness theorem with respect to a wider class of models. We shed some new light on each aspect of the logic. We show that the natural propositional logic carried by the semantics is the logic of Bunched Implications due to Pym and O'Hearn, which combines intuitionistic and multiplicative connectives. This introduces several new connectives not previously considered in logics of informational dependence, but which we show play a very natural role, most notably intuitionistic implication. As regards the quantifiers, we show that their interpretation in the Hodges semantics is forced, in that they are the image under the general construction of the usual Tarski semantics; this implies that they are adjoints to substitution, and hence uniquely determined. As for the dependence predicate, we show that this is definable from a simpler predicate, of constancy or dependence on nothing. This makes essential use of the intuitionistic implication. The Armstrong axioms for functional dependence are then recovered as a standard set of axioms for intuitionistic implication. We also prove a full abstraction result in the style of Hodges, in which the intuitionistic implication plays a very natural r\^ole.Comment: 28 pages, journal versio
    • …
    corecore