
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

5-1992

General Model Theoretic Semantics for Higher-Order Horn Logic General Model Theoretic Semantics for Higher-Order Horn Logic

Programming Programming

Mino Bai

Howard A. Blair
Syracuse University, School of Computer and Information Science, blair@top.cis.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Bai, Mino and Blair, Howard A., "General Model Theoretic Semantics for Higher-Order Horn Logic
Programming" (1992). Electrical Engineering and Computer Science - Technical Reports. 173.
https://surface.syr.edu/eecs_techreports/173

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/173?utm_source=surface.syr.edu%2Feecs_techreports%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-92-09

General Model Theoretic Semantics for
Higher-Order Horn Logic Programming

Mino Bai and Howard A. Blair

May 1992

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, NY 13244-4100

General Model Theoretic Semantics for Higher-Order
Horn Logic Programming*

Mino Bai** Howard A. Blair***

School of Computer and Information Science
Syracuse University, Syracuse, NY 13244, USA

Abstract. We introduce model-theoretic semantics [6] for Higher-Order Horn logic program
ming language. One advantage of logic programs over conventional non-logic programs has
been that the least fixpoint is equal to the least model, therefore it is associated to logical
consequence and has a meaningful declarative interpretation. In simple theory of types [9]
on which Higher-Order Horn logic programming language is based, domain is dependent on
interpretation [10). To define T 'P operator for a logic program 1', we need a fixed domain
without regard to interpretation which is usually taken to be a set of atomic propositions. We
build a semantics where we can fix a domain while changing interpretations. We also develop
a fixpoint semantics based on our model, and show that we can get the least fixpoint which
is the least model. Using this fixpoint we prove the completeness of the interpreter of our
language in [14).

1 Introduction

Many extended versions of Prolog are developed which incorporate higher-order features in logic
programming languages to make programs more versatile and expressive [16, 8, 1]. In this paper, we
build a model-theoretic semantics for a higher-order logic programming language which is suitable
for describing declaratively operations of such programming language.

Church [9] introduced a simple theory of types as a system of higher-order logic. This system
incorporated >.-notation in its particularly simple syntax which actually be viewed as a version of
simply typed >.-calculus. Henkin first gave a semantics for Church's system based on general models.
Domain members of a general model are truth values, individuals, and functions. Church's system
was proved to be complete with respect to Henkin's semantics (10]. Andrews studied general models
further in [3, 4, 5], and built a non-extensional model which is suitable under settings of resolution
theorem proving [2]. The proof theory for this system is shown to have a close resemblance to that
of first-order logic: there is, for example, a generalization to Herbrand theorem that holds for a
variant of this system [12, 13] .

.>.Prolog [16] was the first language to show that higher-order logic could be used as the basis of
a practical programming language . .>.Prolog is based on typed >.-calculi which have their ultimate
origin in Russel's method of stratifying sets to avoid the set theoretic paradoxes. One advantage
of logic programs over coventional non-logic programs has been that they have simple declarative
model-theoretic semantics. That is, in logic programs the least fixpoint is equal to least model,

* To appear in the Proceedings of the Third Russian Conference on Logic Programming and Automated
Reasoning, July 1992, edited by A. Voronkov, Lecture Notes in Artificial Intelligence, Springer-Verlag

** Address correspondence to authors, School of Computer and Information Science, Center for Science and
Technology/Fourth Floor, Syracuse University, Syracuse, New York 13244-4100, USA, Telephone number
of Mino Bai, 315-443-5812, Email address of Mino Bai, mbai@top.cis.syr.edu

*** Email address of Howard Blair, blair@top.cis.syr.edu, Telephone number of Howard Blair 315-443-2368

therefore it is associated to logical consequences and has a meaninful declarative interpretation. In
higher-order logic on which AProlog is based, compared to first-order case, it is extremely difficult
to build an effective model-theoretic semantics. One of these difficulties is that the definition of
satisfaction of formulas is mutually recursive with the process of evaluation of terms (see [10, 2, 3,
4, 5]). In first-order case, the model-theory is two level [11]. First we define a domain of individuals,
and then define satisfaction wrt this domain. As a result of this in higher-order logic it is difficult to
define T 'P operator for a logic program 'P: In a definition ofT 'P operator for a logic program P, we
consider a set of atomic propositions as an interpretation, and need a fixed domain without regard
to interpretations. The second reason is that since higher-order logic programming languages are
usually formulated in non-extensional form, we need a non-extensional model to describe properly
such languages.

Henkin's general model semantics is extensional: i.e., if two objects in a model have the same
extension, then they must be equal. Extensional models are very difficult to deal with, and unsuitable
to describe a higher-order logic programming language like AProlog which contain a propositional
type in its primitive set of types. For example, we can define a program 'Pt = {p(a) <- T, q(a) ,___
T,r(p(a)) <- T} in AProlog. Given program 'Pt, the goal r(p(a)) will succeed in AProlog, but the
goal r(q(a)) will fail, since the unification of r(q(a)) and r(p(a)) will simply fail. For any extensional
model M for 'Pt, M will assign the value T for p(a) and q(a). So p(a) = q(a) is a logical consequence
of 'Pt. M will also assign the value T to r(p(a)), so the extension of the predicate which M will
assign to r contains T. Therefore r(q(a)) is a logical consequence of the program 'Pt. Note that for
this program the valuation of terms is mutually recursive with the satisfaction of formulas, since a
formula can occur as an argument of predicate or functional symbols.

As shown above extensional models are difficult to define and unsuitable for higher-order logic
programming. In this paper, we develop a non-extensional model where domain is independent from
interpretations and build a fixed point semantics, and we prove the completeness of the interpreter
in [14].

2 Higher-Order Horn Logic Programming Language

In this section we describe a higher-order logic programming language for which we build models
in the later sections. For the exposition of our logic programming language C we will follow closely
those in [16, 15].

The set T of types contains a collection To of primitive types and is closed under the formation
of functional types: i.e., if a, f3 E T, then (a-+ {3) E T. The type constructor -+associates to the
right. The type (a-+ /3) is that of a function from objects of type a to objects of type {3.

We introduce a very convenient notation from [17]. For each type symbol a, and each set S
containing objects or expressions, we write Sa to denote the set of things in S which are of type a.
We sometimes write {Sa}a to denoteS. We can also define a type assignment mapping ron the
set S such that r: S-+ T and for all s E S, r(s) =a if s E Sa.

Let S,T,Tt,T2 be sets. Given a mapping f: S-+ T, a E S, and bET, let f[b/a] be that
mapping f' : S -+ T such that for f' a = b and f' c = f c for all c f a. Let b be an element in Tt x T2,
then bt and b2 are the first and second components of b, so b = (bt, b2). Iff is a mapping whose
values are in Tt x T2, let ft and P be mappings with the same domain as f defined so that for
any argument t, fit= (ft)i for i = 1, 2. Thus ft = (Jlt, Pt). Iff: S-+ Tis a mapping, then we
say that f is type consistent iffor all s E S, r(f(s)) = r(s). Iff: S-+ Tt x T2, then we say that f
is type consistent if Jl and P are type consistent. For each integer n E w, we write [n] for the set
{1, .. ·,n}.

2

We assume that there are denumerably many variables and constants of each type. Let the set
of variables and constants be L1 and E, respectively. Simply typed >.-terms are built up in the usual
fashion from these typed constants and variables via abstraction and application. Our well formed
terms (wfts) are simply typed >.-terms. We, as usual, can define the set T(E) of all wfts by giving
the definition of the set T(E)a of wfts of type a by induction.

It is assumed that the reader is familiar with most of basic notions and definitions such as
bound, free variables, closed terms (c-terms), substitution and >.-conversion for this language; only
a few are reviewed here. Letters /a, sa, ta, ···,will be used as syntactical variables ofwfts of type a.
Type subscript symbols may be omitted when context indicates what they should be or irrelevant
to discussion. By Church-Rosser theorem [7], a >.-normal wfts of a wft is unique upto a renaming
of variables. For most part we shall be satisfied with any of these normal forms corresponding to
a wft t, and we shall write >.norm(t) to denote such a form. In certain situations we shall need to
talk about a unique normal form and, in such cases, we shall use p(t) to designate what we shall
call the principal normal or p-normal form oft; i.e. p is a mapping from wfts to >.-normal terms.
There are several schemes that may be used to pick a representative of the a-equivalence classes of
>.-normal terms and the one implicitly assumed here is that of [2].

So far we have introduced >.-term structures and operations on >.-terms. We can introduce logic
into >.-term structures by including o, a type for propositions, amongst the set of primitive types
To, and requiring that the collection E of constants contain the following logical constants: A and
V of type o--+ o-+ o; T of type o; and for every type a, 3a of type (a-+ o)--+ o. The constants
in E other than A, V, 3 and T are called as non-logical constants. A type will be called a predicate
type if it is a type of the form a1 -+ · • ·an -+ o, or a non-predicate type otherwise. We let II ~ E
be the set of predicate constants. Expression of the form 3(>.zG) will be abbreviated by 3zG.

Terms of type o are referred to as goal formula. The >.-normal form of a goal formula consists,
at the outermost level, of a sequence of applications, and the leftmost symbol in this sequence is
called its top level symbol. We shall have use for the structure of >.-normal formulas that is described
below. A goal formula is said to be an atom (atomic) if its leftmost symbol that is not a bracket is
either a predicate variable or constant. A >.-normal goal formula G, then, has the following inductive
characterization: (a) it is T, (b) it is an atom, (c) it is G1 A G2 or G1 V G2, where G1 and G2 are
>.-normal goal formulas, or (d) it is 3zG, where G is a >.-normal goal formula.

Now we identify the formulas that we call higher-order definite clauses, goal formula, and equa
tions. Let g be the collection of all >.-normal goal formulas. An atom is an atomic goal formula A.
A rigid atom is an atom Ar that has a predicate constant as its head. An atom is thus a formula
of the form ptl · · ·tn where "Y = a 1 , ···,an -+ o, pis a predicate constant.y or variabley, and, for
each i E [n], ti is a >.-normal terma;, it is a rigid atom just in case pis a constant. Sometimes we
write p(t1, · · ·, tn) or p(t) for the above atom. Let G be an arbitrary goal formula and Ar be any
rigid atom. Let a formula C be of the form Ar +-G. Then Cis a (higher-order) definite clause. Let
sa, ta E T(E). Then, as usual, an equation e is of the form sa = ta, and an extensional equation is of
the form sa = ta. Let 'De/ be the set of all definite clauses. Then given the collection E of constants,
our logic programming language C = C(E) is completely determined as the triple {T(E), {/, Vef}.
A formula F in a language C is a goal formula, or a definite clause, or an equation. We refer a
set P of formulas from 'De/ as a higher-order definite logic program. As usual, variables in definite
clauses are implicitly universally quantified. Note that in the above definition all wfts in T(E) do
not contain such symbols as =, ::, +-, hence a goal formula G and sa and ta in an equation sa = ta
do not contain those symbols.

We say that a predicate symbol p occurs eztensionally in a goal formula G if (a) G is p(t), or
(b) G is G1 A G2 or G1 V G2, or and p occurs extensionally in G1 or G2, or (c) G is 3zG1, and p
occurs extensionally in G1. In following sections, we will define semantics for >.Prolog. We will take

3

advantage of the following situation: Since logic programs compute extensions of predicates, and
relations between arguments of predicate symbols constitute extensions of predicates, we don't need
extensions of terms until we meet extensional occurrences of predicate symbols in the definition of
satisfaction of formulas.

3 General Model Theoretic Semantics

In this Section we build model-theoretic semantics for the language C. As introduced in Section 1
we need a non-extensional model to prove that a resolution system in type theory is complete. The
model in [2] is in a sense non-extensional. But it doesn't provide an adequate notion of "general"
non-extensional model for our purpose: Domain is defined by indexing extension of the element in
it by wfts. The indexed entity like (t,p} is called a V-complexe where Vis a truth value evaluation
of formulas. So only one kind of domain is used in [2], since the set of all wfts is predetermined
given a language C. In [2], in order to define the domain of interpretation we need a semivaluation
function V, as above, which evaluates proposional formulas toT or F. The definition of domain or
the evaluation of terms is mutually recursive with the definition of evaluation of formulas.

Now we generalize Andrews model to a model where we index the extension by an element from
a general domain which we call frame. From this model we build a model where the definition of
domain is independent from the definition of satisfaction. These two models will be shown to be
isomorphic and elementarily equivalent in the sense that the sets of valid sentences in each semantics
are same. Since our language C is based on A-calculus and application is a basic operation of the
A-calculus, any model of C should be an applicative structure which is a A-model.
Definition Let A be a set and · a binary operation over A such that for all a, (3 E T, for all
a E Aa-,a, bE Aa, a· b is an element in Ap. Then A= (A,-} is said to be an applicative structure.
An assignment into a set A is a type consistent mapping cp: Ll-+ A. A :A-model is a triple (A,·, 11·11}
such that (A, -} is an applicative structure and 11·11 a binary function such that for each assignment cp
into A and term ta-, llta-ll<p E Aa and for all terms f E T(E)a-.B and t E T(E)a, llftii'P = llfii'P ·lltii'P·
We call the function II · II a valuation function in A. 0

Note that in the usual definition of extensional A-model, we need one more condition, which
can be expressed as for all term t, variable Xa, I!Axatii'P = .Xa E Aa ·lltll'P[afx,.]· This condition is
equivalent to extensionality. Since we want non-extensional model, we do not include this condition
for A-model.

A frame is a nonempty set D of objects each of which is assigned a type symbol from the set
T in such a way that every object in Da-.B is a function from Da to D,a for all type symbols a
and (3. A pre-interpretation :F of the language C is a pair (D, J} where D is a frame, and J is a
type consistent mapping in E-+ D. An assignment into a pre-interpretation is an assignment into
the frame of the pre-interpretation. Note that Da-.B is some collection of functions mapping Do
into D,a, i.e. Da-.B ~ Da -+ D,a. A pre-interpretation :F = {D, J} is said to be general iff there is a
binary function VF = V such that for each assignment cp and term ta, V <pta E Da-, and the following
conditions are satisfied for each assignment cp and all terms: (a) if x E Ll, then V 'Px = cpx. (b) if
c E E, then V'Pc = Jc. (c) V'P(!t) = (V'Pf)V'Pt (the value of the function V'Pf at the argument
V'Pt). (d) V~p(Axatp) = .Xd E Da · V<p[d/x]tp i.e. that function from Da into Dp whose value for
each argument dE Dais V<p[d/x]tp.

If a pre-interpretation :F is general, the function VF is uniquely determined. We can prove this
by induction on the definition of terms. We call the unique function vF the connotational valuation
function of terms in the pre-interpretation :F. v:t is called the connotation oft in :F wrt cp. We
sometimes write v: as V'P, as VF, or as V, when pre-interpretation or assignment is clear from

4

context, or irrelevant. It is clear that if t is a c-term, then V:Ft may be considered meaningful
without regard to any assignment. In this case, V:Ft is called the connotation oft in :F and written
as t'. Obviously for a general frameD, (D, ·, V} where· is interpreted as a functional application is a
,.\-model, but in a pre-interpretation logic symbols such as logical operators and predicate constants
are not fully interpreted. So we call it a pre-interpretation.

Now we will give interpretations to logical symbols, after discussing a few constructions ofposets.
Any non-empty set A can be considered a poset under the identity relation where x ~A y iff x = y.
We call this type of poset discrete. Let P1 and P2 be disjoint posets. P1 U P2 is a poset P = P1 U P2

such that for all x, y E P, x ~P y if x ~p1 y or x ~p2 y. P1 x P2 is a poset P = P1 x P2 where
for all x, y E P, x ~P y if x1 ~p1 y1 and x2 ~p2 y2. Let S be a set, and P a poset. S --+ P is
a poset F such that for all f,g E F, f ~F g if for all s E S, f(s) ~P g(s). Let B be the set of
boolean values T and F where F ~8 T. We shall write V and 1\ for Us and n8 , respectively. Let
A be a set. We can consider A a discrete poset. A predicate P over A of type a 1, ···,an --+ o is a
mapping in Aa1 X ···X Aa,. --+ 8, or equivalently a subset of Aa1 X · · · X Aa,.. And we consider
truth values T and F as null-ary predicates over A of type () --+ o such that T() := T and F() := F,
respectively. More generally, we define predicates T~1 ,. .. ,a,. for each list a 1, ···,an of types where
n ~ 0 as Aa1 X • • • X Aa,.. We write <P(A) for the set of all predicates over A. Given two predicates
P, Q E <P(A), it is obvious that P ~ Q if P and Q are of same type and Pis a subset of Q.
Definition Let D be a frame. A semivaluation of D is a function V with domain Do and range the
set 8 of truth values such that the following properties hold: for all c0 , d0 ,/a 0 ED, (a) V(T') = T.
(b) V(V'codo) = V(co)VV(do)· (c) V(t\'codo) = V(c0)/\V(d0). (d) V(3~/a o) =Tiff there is some
e E Da such that V(fa 0 e) = T. Given a frameD and a semivaluation V of D, we define the set
1J of V -complexes based on D as follows: For each type"'/ we define the set v.., of V-complexes.., and
one-one onto mapping "--r :D..,--+ V.., as follows by induction on "'f: (a) V 0 = {(d, V d} :dE D 0 }. For
dE Do, Kod = (d, Vd}. (b) When a E To- {o}, 'Da = {(d, d}: dE Da}· FordE Da, Kad = (d, d}.
(c) 'Da p = { {1, K;1 of o Kp} : f E Da-+{3 }. For f E Da fJ, Ka pf = {1, K-;1 of o Kf3}· We say that
1J is the set of V-complexes based on D. We can also introduce one-one onto mapping"' : D--+ 1)

such that for a E T, dE Da, Kd ="-ad, and function v whose domain is D such that ford E Da,
v(d) = (K-d)2. 0

Now it is easy to see that (a) iff E Da p, then v(f) : 'Da --+ 1)(3, (b) for a E 'Da, v(f)a =
{fa1,v(/a1)}, and (c) 1J = {(d,v(d)}: dE D}. And for any a E V, K.a1 =a, and for any mapping
X whose values are in V, x1 o K =X· Let 1J be a set of V-complexes. Then we define the app/icative
operation* of type (a --+ [3), a --+ {3: For a E 'Da f3 and b E 'Da, a* b is defined to be a2b. The
operation *is left associative. Let a E 'Da"···,a,.-+{3 and b; E 'Da, for i E [n]. Then by definition of
1J it is easy to see that a*b1 * · · ·*bn E 'Dp. Moreover, (V, *} is an applicative structure and for all
J E Da p, dE Da, (Kf) * (Kd) = K(/d).
Definition Let 1J be a set of V-complexes. We can define a binary mapping V such that for all
assignment <pinto V, V10 : T(L')--+ V, and for all t E T(L'), V~t = V10.t. D

Let <p be an assignment into D. Then for all term t, KV10t = V100 ~~:t. If <pis an assignment into
V, then for a E 'Da, V10 (Axat)*a = V10[a/z ..]t. If D be a general frame and 1) a set of V-complexes,
then there is the unique V satisfying that for all t.., E T(L') and assignment <pinto V, V10t.., E v..,,
since the function Vis unique. Therefore (V,*, V) is a ,.\-model.
Definition Given a frameD, we define a primitive extensional domain Ea for a E To: (a) Eo= B.
(b) Ea = Da for a E To- {o}. Given an a E 'Da1 ,. .. ,a,. p where n ~ 0 and [3 E To, we define a
mapping a0 in Da1 --+ · · ·--+ Da,. --+ Ep by induction on n: (a) When n = 0, a0 = a2. (b) When
n > 0, a0 = >..d1 E Da 1 • (a*"-d1)0. D

Let a E 'Da 1 ,. •• ,a,. f3 where n > 0 and [3 E To. Then (a) for all d; E Da,, i E [n], a0d1 · · ·dn =
(a* Kd1 * · · ·Kdn)2, (b) If [3 E To- {o}, then a0 = a1. We can show this by induction on n.

5

Definition 4 Let :F = (D, J) be a general pre-interpretation and V a semivaluation of D. An
£-structure A is a pair (1>, J) such that 1> is a set of V-complexes based on D. We say that A is
based on :For on D. An assignment rp into A is an assignment into 1>. When F is a formula in
£, we write AI=F[rp] to say that A satisfies F wrt rp. (a) When Sa, ta E T(L'), Al=sa = ta['P] iff
Vtpsa = Vtpta, Al=sa := ta['P] iff (Vtpsa)0 = (Vtpta)0. (b) When G is a goal formula, AI=G[rp] iff
v:a = T. (c) When A +- G is a definite clause, AI=A +- G[rp] iff AI=A[rp] whenever AI=G(rp]. We
write AI=F to say that a formula F is valid in A if A1=F[rp] for all assignments rp into A. Given a
set of definite clause 'P, we say that A is a model or D-model for 'P, and write AI='P, if each definite
clause in 'P is valid in A. Given a closed goal formula G, we say that G is a logical consequence of
'P, and write 'PI=G if G is valid in all models of 'P. 0
Definition Let D be a general frame and 5 a subset of D0 • Then 5 is upward saturated if a) T' E 5,
b) c E 5 implies V'cd, V'dc E 5 ford E D0 , c) c, dE 5 implies A'cd E 5, and d) la-oda E 5 implies
3'afa-+o E 5. 0

Let 5 ~ D 0 • Then there is a smallest upward saturated set extending 5. Let C be the collection
of upward saturated set extending 5. Cis not empty, since Do E C. So nC exists. It is easy to check
that it is upward saturated. It fulfills the other considerations, by definition. The smallest upward
saturated set extending 5 is called the upward saturated closure of 5, and is denoted as SU.

If 5 ~ Do we can always find by the above method an extension of 5 which is saturated. The
above definition is certainly simple, but it is unsatisfactory on several grounds. For example, it does
not make explicit how the elements of the closure of 5 are generated from the elements of 5. From
this reason we give a more constructive definition, involving restricted set-theoretic methods.
Definition Let 5 ~ D0 • An elementary 5-derivation is a sequence c1, ···,em, m ;:::: 1, of elements
from Do, where for each i E [m], at least one of the following conditions is satisfied: (a) ci = T'.
(b) ci e 5. (c) There is a j < i such that ci is either V'cid or V'dci for some dE D 0 • (d) There
are j,k < i such that d = A'cic11 • (e) There are j < i and f E Da-o such that ci = fd for some
dE Da and ci = 3'af. 0

Note that if c1 , • • ·,em and d1 , · · ·, rF' are two elementary 5-derivations, then the concatenation
c1 , • · • , em, d1, · • ·, rF' is also an elementary 5-derivation. Furthermore, a nonempty initial segment
of an elementary 5-derivation is again an elementary 5-derivation. An element d E Do is elementary
5-derivable if there is an elementary 5-derivation c1, • • ·,em where em = d. This is equivalent to
requiring that d be an element (not necessarily the last) in some elementary 5-derivation. The set
of all dE Do that are elementary 5-derivable is denoted by E(S). We shall show that E(5) is the
upward closure of 5 referred to above.

Theorem 1. Let 5 ~ D0 • Then: (a) 5 ~ E(S). (b) E(5) is upward saturated. (c) If 5 ~ 5' and 5'
is upward saturated, then E(S) ~ 5'. (d) SU = E(S).
Proof The proofs of (a) and (b) are obvious. (c) Let 5 ~ 5 1 and 5 1 be upward saturated. We
prove by induction on m that whenever c1 , • • • , em is an elementary 5-derivation then ci e 5' for
i E (m]. When m = 1. it is clear. If the property is true for m, and c1, ···,em, cm+l is an elmentary
5-derivation, then by IH we have that dE 5' fori E [m). Furthermore cmH is T', or acE 5 ~ 5',
or it is obtained by one of the defining rules from the elements in 5'. In all cases it is easy to see,
by IH and definition of upward saturatedness, that cm+l E 5'. 0

Definition Let (D, J) be a general pre-interpretation. Then we write II(D) for the D-base which
is defined to be the set {p(a1, ···,an) : p E 1Ia1 , .•• ,a .. -o and ai E Da, for all i E [n]}. 0

f Note that in this definition the symbol for satisfaction in A is the small!=. The normal size F is used for
another definition of satisfaction which is defined later in this paper.

6

A subset JC of ll(D) induces a unique mapping he in ll -+ IP(D) as follows: for all d E D,
(d) E I~(p) iff p(d) E /C. Let /C1 ~ /C2 ~ ll(D), then it is easy to see that I~. ~11-+~(D) I~,..
Sometimes given /C ~ II(D), we write simply /C to mean the map_ping_I~.

Given I~ ll(D), we can introduce set S1 such that S1 = {p'd: pd E I}. We define a function
VI :Do-+ Bas follows: for each dE D0 , VId = T if dE Sf, F otherwise. And VI is obviously a
semivaluation of D. And for all dE Do, dE Sf only if there is an S1-derivation for d. This follows
from Theorem 1.

Theorem2. Let I~ ll(D). dE Sf only if there is a finite I'~ I such that dE Sf,.
Proof Assume d E Sf. Then by the fact that a derivation sequence is finite, it is clear that there
is a finite I'~ I such that there is a finite elementary S1'-derivation sequence. 0

Definition Let I~ II(D). Then I induces the set VI of Vrcomplexes based on D and that one-one
onto function "'I : D -+ V 1 given by the definition of Vi-complexes, and the following functions
whose domain is D: the function "I such that for each dE D, VI(d) = (~>.Id)2, and the function ei
such that for dE D, eid = (~>.Id)0. Let dE Da-+P· Then for all dt E Da, ei(d)dt = ei(ddl)· 0

0

Definition Let (D, J} be a general pre-interpretation. An interpretation M is a pair (D, I} where
I is a type consistent mapping in II -+ IP(D). We call M a D-interpretation. An assignment cp into
M is a type consistent mapping r.p : .d -+ D. When F is a formula in £, we write M f= F[cp] to say
that M satisfies F wrt cp. For all goal formulas G, Gt, G2, for each rigid atom A, (a) When sa, ta E
T(E)a, M f= Sa= ta[cp] iffVcpsa = Vcpta, M F Sa= ta[cp] iff ei(Vcpsa) = ei(Vcpta)· (b) M F T(cp].
(c) M f= p(tt, · · ·, tn)[cp] iff (V cpit, · · ·, V cptn} E Ip if pis a constant, or (V cptt, · · ·, V cptn) E cp o ei(P)
if pis a variable. (d) M f= Gt V G2[cp] iff M f= Gt[cp] or M f= G2[cp]. (e) M f= G1 1\ G2[cp] iff
M f= Gt[cp] and M f= G2[cp]. (f) M I= 3xaG iff there is ad E Da such that M f= G[cp[d/za]]. (g)
M I= A - G[cp] iff M I= A[cp] if M I= G[cp].
We write M f= F to say that a formula F is valid in M if M f= F[cp] for all assignments r.p into
M. Given a definite program P, we say that M is a model or D-model for P, and write M f= P,
if each definite clause in Pis valid in M. Given a closed goal formula G, we say that G is a logical
consequence of P, and write P f= G if G is valid in all models of P. 0
Definition Let :F = {D, J} be a general pre-interpretation, V a semivaluation of D, and V be the
set of V-complexes based on D. Given an £-strucure A= {V, J} based on :F, the D-interpretation
A0 induced by A is defined to be (D, I} where I = J o K. o (·)0 j II. Conversely, given a D
interpretation M = (D, I} based on :F, we can get the set D(J) of VI-COmplexes based on D. Then
Me is an £-structure (De, J} induced by M. 0

Using the above facts and since assignments into D and 1) have one-one correspondence between
them, we can show that the two semantics are elemetarily equivalent in the following sense.

Theorem4. (a) For all formula Fin£, f= F ifft=F. (b) I/P be a definite program and G a closed
goal, then PI= G if/Pt=G. 0

Theorem 5. The extensionality is not valid.
Proof Take an extensionality formula Po = q0 -+Po = q0 • It is obvious that V~p0 = V~q0 does not
imply that VcpPo = Vcpq0 • For the extensionality formula (Vza · fz = gz) -+ f = g, we take a E To
and {J = o and D-interpretation I such that If= Ig = T~. Then f = g but not always f =g. 0

Let M = (D, I} be an interpretation based on :F = {D, J}, we can identify M with the subset I
of II(D). And every subset I of ll(D) is aD-interpretation. Obviously the set of all D-interpretation
is a complete lattice with the usual set inclusion ordering between D-interpretations.

7

Theorem 6. Let II ~ I2 ~ II(D). If I1 I= G[<p], then l2 I= G[<p].
Proof By induction on G. When G is T, it is obvious. When G is a rigid atom p(tt, · · ·, tn),
since ItP ~ I2p, I2 I= G[<p]. When G is p(t1. · · ·, tn) where p is a variable. Since elt ~ CJ2 ,

I2 I= p(t1. · ·., tn)[<p]. When G is G1 A G2. It I= G1[<p] and I1 I= G2[<p]. By IH I2 I= G1[<p] and
12 I= G2 [<p]. So I2 I= G[<p]. When G is G1 V G2. Assume, wlog, It I= G1[<p]. By IH I2 I= Gt[<p].
When G is 3xaG1. There exists ad E Da such that It I= G1[<p[d/xa]]. By IH I2 I= Gl[<p[d/xa]]. So
12 I= G[<p]. o

Let :F = (D, J} be a general pre-interpretation. We can define a mapping T~ from the lattice
of D-interpretations to itself. Let :F be a pre-interpretation (D, J} of a definite program "P and I a
D-interpretation. Then T$(I) = {p(dt, · · ·, dn) E II(D) :there exist an assignment <pinto D and a
clause p(t1. · · ·, tn) +- G E "P such that di = V,pfi for each i E [n] and I I= G[<p]}

Lemma 7. T~ is monotonic, i.e. given It ~ I2 ~ II(D), T$(It) ~ T$(I2).
Proof Assume p(d1,···,dn) E T~(It) for p(d1,···,dn) E II(D). Then there are an assignment <p

into It and a clause p(tl. · · ·, tn) +- G E "P such that Vv>ti = di for all i E [n] and It I= G[<p]. By
Theorem 6, 12 I= G[<p]. D

So T~ is a monotonic transformation on the set of all D-interpretations.

LemmaS. Let I~ II(D). Then I!= "P iffT~(I) ~I.
Proof=>) Assume p(d1. · · ·, dn) E T p(I) for some p(dt. · · ·, dn) E II(D). Then there are an assign
ment <p into D and a clause p(tl. · · ·, tn) +- G E "P such that V <pti = di for all i E [n] and I I= G[<p].
Then since I I= 1', I I= p(t1. · · ·, tn)[<p]. Therefore p(d1. · · ·, dn) E I.
~) Similarly. 0

LemiDa 9. Let 11 and 12 be D-models of "P. Then l1 n I2 is also D-model of "P.
Proof Since T p(It) ~ It and T p(I2) ~ I2, by monotonicity ofT 1' operator, T p(ftni2) ~ T p(ft) ~
I1 and T p(ft n I2) ~ T p(I2) ~ h SoT p(I1 n I2) ~ II n I2. o

But the set of all D-models is not closed under join operation, i.e. It U I2 is not necessarily a D
model, whenever It and I2 are D-models. Take for example the definite program 1'2 = {p +- q, r }.
Then II(D) = {p,q,r}. {q} and {r} are D-models for 1'2, but {q,r} is not aD-model.

Lemma 10. Let (In}new be w-chain of D-interpretations. Then for each goal G and assignment <p
into D, Unewin I= G[<p] only if there is an n E w such that In I= G[<p].
Proof Let I= Unewin. Then I I= G[<p] only if V1(V'PG) = T. So there is a finite I'~ Isuch that
VI'(V"'G) = T. Therefore there is annE w such that I'~ ln. By monotonicity In I= G[<p]. 0

Lemma 11. T~ is continuous.
Proof Let {In)new be a w-chain of D-interpretations. We need to show: T p(Unewin) = Unew T p(In)·
The monotonicity ofT 1' implies that Unew T p(In) ~ T p(Unewin)· Now we need to show that
Tp(Unewin) ~ Unew Tp(In)· Let d1. · · ·,dn ED, andp(d1, · · ·,dn) E II(D). Assumep(dl. · · ·,dn) E
T p(Unewin), to show p(dl. · · ·, dn) E Unew T p(In)· There are p(tt, · · ·, tn) +- G E "P and an assign
ment <pinto H such that <pti = di for all i E [n] and Unewin I= G[<p]. So there is nEw such that
In I= G[<p]. Therefore there is nEw such that p(dt. · · ·, dn) E T p(In)· 0

So we can show that every definite program has the least D-model as follows:

Theorem 12. (T$)"'(1/>) is the least fixpoint ofT$. 0

Theorem 13. Let M$ = n{I ~ II(D) :I I= P}, then M$ is the least D-model of"P and M$ =
T!f,(l/>).
Proof By Lemmas 8,9,7 and Theorem 12. 0

8

4 Herbrand Models

In order to determine validity or logical consequences, we need to consider all interpretations of the
language C. In this section we shall show that we can restrict our attention to Herbrand models.
That is, we show that if A is true in all Herbrand (that is symbolic) models it follows that A is true
in all models and a fortiori in the model intended by the person who wrote the program.
Definition The Herbrand frame His a set such that (a) His the set of all p-normal c-terms. (b)
Let f E Ha_.f3, then for all t E Ha, f(t) = p(ft). 0

It is obvious that the Herbrand frame H is countable.
Definition The Herbrand pre-interpretation 1i:F is a pre-interpretation (H, J} such that H is the
Herbrand frame and J satisfies the following: (a) If Ca is a constant such that a is a primitive type,
then lea = Ca. (b) If da->{3 is a constant of type a --+ (3, then for all ta E Ha, (Jda-f3)(ta) =
da_.pta. 0

Lemma 14. The Herbrand pre-interpretation is general. 0

Definition An Herbrand interpretation M is an interpretation (H, I} based on the Herbrand pre
interpretation. The Herbrand base 1iB is the set II(H). 0

Let I~ II(H) be an Herbrand interpretation and <pan assignment into I. Then we can consider
cp as the generalized substitution u such that for each term t E T(E), ut = (cp l FV(t))t. It is easy
to see that for every term t, <pt is a c-term and Vcpt = cpt, for each goal formula G, cpG a closed goal
formula, and for each definite clause C, cpC a closed definite clause.

Let I be a D-interpretation based on :F. The Herbrand interpretation I* induced by I is an
Herbrand interpretation such that for every A E II(H), A E I* iff I I= A. Let cp and cp' be
assignments into H and D, respectively. Then we say that cp' is induced by cp if cp' = cp o V:F. The
mappingVF: H-+ Dis a homomorhism from I* into I, since for p E 1Ia1 , ... ,a,.-o, h; E Ha., i E [n],
if (h1,···,hn) E I*p, then (V:Fh1,···, V:Fhn} E Ip. LethE Ha 1 ,---,a,._.0 • Then for all h; E Ha,,i E
[n], (h1, · · ·, hn} E ep (h) implies (V:Fh1, · · ·, V:Fhn) E e1(VF h).

Lemma15. Let I,I*,cp',cp be as above. Then (a) Ift is a term, then v:,(cpt) = v:,t, (b) If A is
a rigid atom then I* I= A[cp] iff I I= A[cp'], (c) If G is a goal formula such that I* I= G[cp], then
I I= G[cp'], {d) If C is a definite clause such that I f= C[cp'], then I* I= C[cp], {e) Then if I f= P,
then I* I= P. 0

Let :F be a general pre-interpretation. Then FF denotes logical implication in the context
of fixed domains and functional assignment. Specifically F?iF denotes logical implication in the
context of Herbrand frame and functional assignment.

Let G be a goal formula. We write 3(G) to denote the existential closure of free variables in G.

Theorem 16. Let P be a definite program and G a goal formula. Then P f= 3(G) iffP F?iF 3(G).
Proof -¢::=) Let an Her brand interpretation induced by the given interpretation I be I*. Assume
I I= P. Then I* I= P, so I* I= 3(G). Then there is an assignment cp into I* such that I* f= G[cp].
Let the assignment cp' into I be induced by cp. Then If= G[cp'] by Lemma 15 (c). So If= 3(G). 0

If cp is a substitution, then cp-x., is that substitution u such that u = cp t (..:1- {xa}).

Lemma17. Let I~ II(H). Then for all closed substitution u, assignment cp into H, and goal
formula G, I I= uG[cp] iff I I= cpuG.
Proof We prove by induction on G. When G is T or a rigid atom, it is obvious. When G is

9

p(t11 ···,tn) where p E .6. I I= uG[r,o] iff (cputl,···,r,oO'tn} E e1(cpup) iff (r,o'r,outl,···,r,o'r,outn) E
e1(r,o'[r,oupfp]p) for all assignment r,o' into H iff I I= r,ouG[r,o'] for all assignment r,o' into H iff
I I= cpuG.

When G is 3xaG1. I I= uG[r,o] iff I I= 3xa0'-z .. Gl['P] iff there is an h E Ha such that
I I= O'-z .. G1[cp[h/za]] iff there is an h E Ha such that I I= r,o[h/xa]O'-z .. Gl by IH iff for all
assignment r,o' into H, I I= r,o'r,o[h/za]O'-z .. Gt. since r,o[h/xa]u-~: .. Gl is a closed goal. iff I I=
(r,o'[h/za])I,D-z .. O'-z .. Gl iff I I= I,D-z .. O'-z .. Gl[r,o'[h/za]] iff I I= 3Xai,D-z .. O'-z .. Gl[r,o'] iff I I= r,ouG. 0

Corollary 18. For all assignment cp into H, goal formula G, I I= G[r,o] iff I I= r,oG. 0

Theorem 19. For all closed substitution u and goal formula G such that u3xaG is closed, I I=
u3xaG iff there is an hE Ha such that I I= u[h/za]G.
Proof Let cp be an assignment into H. I I= u3zaG[r,o] iff I I= 3za0'-z .. G[cp] iff there is an hE Ha
such that I I= 0'-z .. G[r,o[h/za]] iff there is an hE Ha such that I I= r,o[h/za]u-z .. G by Corollary 18
iff I I= u[h/za]G[r,o] by Corollary 18, since r,o[h/za]u-z .. = cpu[h/za]· 0

Corollary20. Let MJ = n{I ~ ll(H): I I= 'P}. Then MJ I= 'P.
Proof Follows from Theorem 13. 0

Theorem21. (TJ)w(tP) is the least fixed point ofTJ and MJ = (TJ)w(tP)·
Proof Follows from Lemma 11. 0

Theorem 22. Let A E ll(H). Then 'P I= A iff MJ I= A.
Proof 'P I= A iff 'P 1=-xF A iff for all H-interpretation I such that I I= 'P, A E I iff A E MJ. 0

For the definite program 'P1 introduced in section 1, it is easy to see that

T!p1 (tP) = {p(a), q(a), r(p(a))}

So r(p(a)) is a logical consequence of'P1, while r(q(a)) is not.
The program 'P1 is non-extensional in the sense that extensional identity of arguments of the

predicate r does not imply extensional identity of proposition r(·). In [18] Wadge defined a fragment
of higher-order logic programming language (in fact it's a pure subset of HiLog [8]) where every
program behaves extensionally.
Example We can define the following higher-order logic program 'Pa in the language of [18]: Let
MAP be predicate constant of type (int- o),list- o and· he an infix functional constant of
type int, list - list and p and q predicate constants of type int - o and "Pa include the following
definite clauses.
MAP(z,z ·l) r- zz A MAP(z,l).
MAP(z,nil) r- T.

Assume that the above clauses are the only clauses that defines the predicate MAP. Let I be
a fixpoint ofT -p3 • We shall show that p = q- MAPp = MAPq is valid under I. Let p::: q valid
under I. Then for all a E Hint• pa E I iff qa E I. Moreover the set Huat has the following inductive
characteriztion. (a) nilE Huat· (b) For a E Hint, a·l E Hu31 if IE Huat· To prove MAPp = MAPq
is valid in I, it's enough to show that for all I E Hu.1, M AP(p, l) E I iff M AP(q, l) E I. We
prove this by induction on I. Obviously M AP(p, nil), M AP(q, nil) E I. Let a ·I E Huat· Assume
M AP(p, a· l) E I to show M AP(q, a ·I) E /. Then pa, M AP(p, I) E /. So by IH, M AP(q, l) E I.
Therefore MAP(q, a ·I) E I. 0

10

5 Completeness

In this section we prove completeness of interpreter in [14). Our actual interpreter is that of [14)
plus backchaining when atomic goals need to be solved. The definition of this non-deterministic
interpreter can be given by describing how a theorem prover for programs and goals should function.
This interpreter, given the pair {P, G} in its initial state, should either succeed or fail. We shall use
the notation P 1- G to indicate the meta proposition that the interpreter succeeds if started in the
state (P, G}. The search related semantics which we want to attribute to the logical constants can
be specified as follows: (a) P 1- T. (b) P 1- G1 VG2 only ifP 1- G1 or P 1- G2. (c) P 1- G1 /I.G2 only
ifP 1- G1 and P 1- G2. (d) P 1- 3xaG1 only if there is some term t E T(E)a such that P 1- [tfxa]Gl·
(e) P 1- A only if there are a definite clause A1 - G1 E Panda substitution u such that A= uA1
and P 1- uG1.

Let F be a formula of C. Then IF! denotes the set {<pF: <pis an assignment into H}. It is easy
to see that ifF is a goal formula, IF! is a set of closed goal formulas, and ifF is a definite clause,
then IFI is a set of closed definite clauses. This notation can be extended to set r of formulas of C:
IFI = U{IFI: FEr}.
Definition Let r be a set of formulas that are either closed atoms or definite clauses, and let G
be a closed goal formula. Then a r -derivation sequence for G is a finite sequence G1, G2, ... , an of
closed goal formulas such that an is G, and for each i E [n), (a) if G1 is a closed atom, then i) G1 is
T, or ii) Gi E r, or iii) there is a definite clause G1 - Gi E IFI such that j < i, (b) if Gi is G1 V G2,
then for some :j < i, Gi is either G1 or G2, (c) if G1 is G1 /1. G2, then for some :j, k < i, Gi = G1
and G" = G2, (d) if Gi is 3xaGb then there is atE Ha and :j < i such that [tfxa]Gl = Gi. 0

Theorem 23. Let I ~ II(H). Then for all closed goal formula G, I f= G iff there is an I -derivation
sequence for G.
Proof¢:) Let G1, ···,an be an /-derivation sequence. We prove by induction on i: for all i E [n),
If= G1• When i = 1, then it is obvious. When i > 1. If G1 = G1 /1. G2, then by IH, If= G1 and
If= G2. So If= G1 /1. G2. If G1 = 3xaG1, then by IH, there is atE Ha such that If= [t/xa)Gl. So
I f= 3xaG1 by Theorem 19.
::}) Follows from Theorem 1, since for a Her brand interpretation I, we can identify I with SI. 0

Lemma 24. Let G be a closed goal formula. Then P 1- G iff there is a P-derivation for G.
Proof See [16). 0

Theorem 25. Let G be a closed goal formula. Then P 1- G iff P f= G.
Proof By Theorems 22,21, P f= G iff T!p(t/1) f= G. Let In = T!p(t/1) for n E w. Now we need to
prove that there is a P-derivation G1'. 0 0 ' G1 for G iff there is an n E w such that In F G.
::}) By induction on 1. When G is T, Io f= T. When G is G1 /1. G2, then there are P-derivations for
G1 and G2 whose lengths are less than 1. So by IH, there are n1, n2 E w such that ln 1 f= G1 and
ln 2 F G2. Assume, wlog, n1 < n2. Then ln 2 f= G2, so ln 2 f= G1 /1. G2. When G is 3xaG1. Then
there are a term t E Ha and a P-derivation for [tfxa]G1 whose length is less than 1. So by IH,
there is an n E w such that In f= [tfxa]Gl. Therefore In f= 3xaG1 by Theorem 19. When G is a
rigid atom A. Then there are a number j <land a definite clause A- Gi E !Pl. By IH, In f= Gi.
Therefore In+l f= A.
¢:)We prove the claim by induction on n. First assume the claim true if In f= G. To prove the claim
for n + 1 assume In+l F G. Then there is an In+l-derivation G1 ' 0 0 .' am for G by Theorem 23.
Now we prove, by ~nduction on i, that there is a P-derivation for G1, for each i E [m). IfG1 is T, it
is immediate. If G' is a rigid atom A, then since A E InH, there is a definite clause A - G1 E !PI
such that In f= G1. Then by our first assumption, there is a P-derivation for G1. We now get a P

11

derivation for A by appending A to this sequence. When Gi is Gt 1\ G2. Then by our second IH,
there are 'P-derivations for G1 and G2. Now we get a 'P-derivation for Gi by appending Gi to the
end of concatenation these sequences. When Gi is 3zaGt. By second IH, there is a term t E Ha
such that there is a P-derivation for [t/za)G1 , to which we attach Gi to get P-derivation for Gi. 0

6 Conclusion

We have built a general model theoretic semantics for Higher-Order Horn logic programming lan
guage and established the least model and least fixed point semantics. We also showed soundness
and completeness of those interpreters developed in [16, 14] by establishing equivalence between the
fixed point semantics and the operational semantics of those interpreters based on P-derivations.

7 Acknowledgements

We wish to thank Prof. Sanchis for pointing out a serious error in the previous version of this
paper. The first author also would like to thank Prof. Dale Miller for the encouragements and
helpful suggestions.

References

1. James H. Andrews. Predicates as parameters in logic programming: A set-theoretic basis. In
P. Schroeder-Heister, editor, Extensions of Logic Programming, pages 31--47, 1989.

2. Peter B. Andrews. Resolution in type theory. The Journal of Symbolic Logic, 36(3):414-432, 1971.
3. Peter B. Andrews. General models and extensionality. The Journal of Symbolic Logic, 37(2):395-397,

1972.
4. Peter B. Andrews. General models, descriptions, and choice in type theory. The Journal of Symbolic

Logic, 37(2):385-394, 1972.
5. Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth through Proof.

Academic Press, 1986.
6. Mino Bai. A declarative foundation of .AProlog with equality. Technical Report SU-CIS-92-03, Syracuse

University, 1992.
7. H. P. Barendregt. The Lambda Calculus. North-Holland, 1984.
8. Weidong Chen, Kichael Kifer, and David S. Warren. Hilog: A first-order semantics for higher-order

logic programming constructs. In Ewing L. Lusk and Ross A. Overbeek, editors, Logic Programming
Proceedings of North American Conference, pages 1090-1114, 1989.

9. Alonzo Church. A formulation of simple theory of types. The Journal of Symbolic Logic, 5:56-68, 1940.
10. Leon Henkin. Completeness of the theory of types. The Journal of Symbolic Logic, 15:81-91, 1950.
11. John W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
12. Dale A. Miller. Proofs in higher-order logic. PhD thesis, Carnegie-Mellon University, 1983.
13. Dale A. Miller. A compact representation of proofs. Studia Logica, 46(4):347-370, 1987.
14. Dale A. Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a foundation

for logic programming. Technical report, University of Pennsylvania, 1989.
15. Dale A. Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a foundation

for logic programming. Annals of Pure and Applied Logic, 51:125-157, 1991.
16. Gopalan Nadathur. A higher-order logic a the basis for logic programming. PhD thesis, University of

Pennsylvania, 1986.
17. J. A. Robinson. Mechanizing higher-order logic. Machine Intelligence, 4:150-170, 1969.
18. William W. Wadge. Higher-order hom logic programming. In U. Saraswat and K. Ueda, editors,

Proceedings of International Logic Programming Symposium, pages 289-303, 1991.

12

	General Model Theoretic Semantics for Higher-Order Horn Logic Programming
	Recommended Citation

	SU-CIS-92-09_001c
	SU-CIS-92-09_002c
	SU-CIS-92-09_003c
	SU-CIS-92-09_004c
	SU-CIS-92-09_005c
	SU-CIS-92-09_006c
	SU-CIS-92-09_007c
	SU-CIS-92-09_008c
	SU-CIS-92-09_009c
	SU-CIS-92-09_010c
	SU-CIS-92-09_011c
	SU-CIS-92-09_012c
	SU-CIS-92-09_013c

