5 research outputs found

    With Great Speed Come Small Buffers: Space-Bandwidth Tradeoffs for Routing

    Full text link
    We consider the Adversarial Queuing Theory (AQT) model, where packet arrivals are subject to a maximum average rate 0ρ10\le\rho\le1 and burstiness σ0\sigma\ge0. In this model, we analyze the size of buffers required to avoid overflows in the basic case of a path. Our main results characterize the space required by the average rate and the number of distinct destinations: we show that O(kd1/k)O(k d^{1/k}) space suffice, where dd is the number of distinct destinations and k=1/ρk=\lfloor 1/\rho \rfloor; and we show that Ω(1kd1/k)\Omega(\frac 1 k d^{1/k}) space is necessary. For directed trees, we describe an algorithm whose buffer space requirement is at most 1+d+σ1 + d' + \sigma where dd' is the maximum number of destinations on any root-leaf path

    General Dynamic Routing with Per-Packet Delay Guarantees of O( distance + 1 / session rate )

    No full text
    A central issue in the design of modern communication networks is that of providing performance guarantees. This issue is particularly important if the networks support real-time traffic such as voice and video. The most critical performance parameter to bound is the delay experienced by a packet as it travels from its source to its destination

    Time-Constrained Scheduling of Weighted Packets on Trees and Meshes

    Full text link
    corecore