1,112 research outputs found

    Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund. Copyright @ 2013 Pey et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: The study of cellular metabolism in the context of high-throughput -omics data has allowed us to decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is essential to efficiently integrate experimental data into metabolic modeling. Results: We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype under study based on its gene/protein expression data. This framework is based on the Carbon Flux Path (CFP) approach, a mixed-integer linear program that expands classical path finding techniques by considering additional biophysical constraints. In particular, the objective function of the CFP approach is amended to account for gene/protein expression data and influence obtained paths. This approach is termed integrative Carbon Flux Path (iCFP). We show that gene/protein expression data also influences the stoichiometric balancing of CFPs, which provides a more accurate picture of active metabolic pathways. This is illustrated in both a theoretical and real scenario. Finally, we apply this approach to find novel pathways relevant in the regulation of acetate overflow metabolism in Escherichia coli. As a result, several targets which could be relevant for better understanding of the phenomenon leading to impaired acetate overflow are proposed. Conclusions: A novel mathematical framework that determines functional pathways based on gene/protein expression data is presented and validated. We show that our approach is able to provide new insights into complex biological scenarios such as acetate overflow in Escherichia coli.Basque Governmen

    Gene Expression based Survival Prediction for Cancer Patients: A Topic Modeling Approach

    Full text link
    Cancer is one of the leading cause of death, worldwide. Many believe that genomic data will enable us to better predict the survival time of these patients, which will lead to better, more personalized treatment options and patient care. As standard survival prediction models have a hard time coping with the high-dimensionality of such gene expression (GE) data, many projects use some dimensionality reduction techniques to overcome this hurdle. We introduce a novel methodology, inspired by topic modeling from the natural language domain, to derive expressive features from the high-dimensional GE data. There, a document is represented as a mixture over a relatively small number of topics, where each topic corresponds to a distribution over the words; here, to accommodate the heterogeneity of a patient's cancer, we represent each patient (~document) as a mixture over cancer-topics, where each cancer-topic is a mixture over GE values (~words). This required some extensions to the standard LDA model eg: to accommodate the "real-valued" expression values - leading to our novel "discretized" Latent Dirichlet Allocation (dLDA) procedure. We initially focus on the METABRIC dataset, which describes breast cancer patients using the r=49,576 GE values, from microarrays. Our results show that our approach provides survival estimates that are more accurate than standard models, in terms of the standard Concordance measure. We then validate this approach by running it on the Pan-kidney (KIPAN) dataset, over r=15,529 GE values - here using the mRNAseq modality - and find that it again achieves excellent results. In both cases, we also show that the resulting model is calibrated, using the recent "D-calibrated" measure. These successes, in two different cancer types and expression modalities, demonstrates the generality, and the effectiveness, of this approach

    Kernel methods in genomics and computational biology

    Full text link
    Support vector machines and kernel methods are increasingly popular in genomics and computational biology, due to their good performance in real-world applications and strong modularity that makes them suitable to a wide range of problems, from the classification of tumors to the automatic annotation of proteins. Their ability to work in high dimension, to process non-vectorial data, and the natural framework they provide to integrate heterogeneous data are particularly relevant to various problems arising in computational biology. In this chapter we survey some of the most prominent applications published so far, highlighting the particular developments in kernel methods triggered by problems in biology, and mention a few promising research directions likely to expand in the future

    Optimization of Sparsity-Constrained Neural Networks as a Mixed Integer Linear Program: NN2MILP

    Get PDF
    The literature has shown how to optimize and analyze the parameters of different types of neural networks using mixed integer linear programs (MILP). Building on these developments, this work presents an approach to do so for a McCulloch/Pitts and Rosenblatt neurons. As the original formulation involves a step-function, it is not differentiable, but it is possible to optimize the parameters of neurons, and their concatenation as a shallow neural network, by using a mixed integer linear program. The main contribution of this paper is to additionally enforce sparsity constraints on the weights and activations as well as on the amount of used neurons. Several experiments demonstrate that such constraints effectively prevent overfitting in neural networks, and ensure resource optimized models

    Revealing metabolite biomarkers for acupuncture treatment by linear programming based feature selection

    Get PDF
    BACKGROUND: Acupuncture has been practiced in China for thousands of years as part of the Traditional Chinese Medicine (TCM) and has gradually accepted in western countries as an alternative or complementary treatment. However, the underlying mechanism of acupuncture, especially whether there exists any difference between varies acupoints, remains largely unknown, which hinders its widespread use. RESULTS: In this study, we develop a novel Linear Programming based Feature Selection method (LPFS) to understand the mechanism of acupuncture effect, at molecular level, by revealing the metabolite biomarkers for acupuncture treatment. Specifically, we generate and investigate the high-throughput metabolic profiles of acupuncture treatment at several acupoints in human. To select the subsets of metabolites that best characterize the acupuncture effect for each meridian point, an optimization model is proposed to identify biomarkers from high-dimensional metabolic data from case and control samples. Importantly, we use nearest centroid as the prototype to simultaneously minimize the number of selected features and the leave-one-out cross validation error of classifier. We compared the performance of LPFS to several state-of-the-art methods, such as SVM recursive feature elimination (SVM-RFE) and sparse multinomial logistic regression approach (SMLR). We find that our LPFS method tends to reveal a small set of metabolites with small standard deviation and large shifts, which exactly serves our requirement for good biomarker. Biologically, several metabolite biomarkers for acupuncture treatment are revealed and serve as the candidates for further mechanism investigation. Also biomakers derived from five meridian points, Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yanglingquan (GB34), and Weizhong (BL40), are compared for their similarity and difference, which provide evidence for the specificity of acupoints. CONCLUSIONS: Our result demonstrates that metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture. Comparing with other existing methods, LPFS shows better performance to select a small set of key molecules. In addition, LPFS is a general methodology and can be applied to other high-dimensional data analysis, for example cancer genomics

    An Evolutionary Variable Neighborhood Search for Selecting Combinational Gene Signatures in Predicting Chemo-Response of Osteosarcoma

    Get PDF
    In genomic studies of cancers, identification of genetic biomarkers from analyzing microarray chip that interrogate thousands of genes is important for diagnosis and therapeutics. However, the commonly used statistical significance analysis can only provide information of each single gene, thus neglecting the intrinsic interactions among genes. Therefore, methods aiming at combinational gene signatures are highly valuable. Supervised classification is an effective way to assess the function of a gene combination in differentiating various groups of samples. In this paper, an evolutionary variable neighborhood search (EVNS) that integrated the approaches of evolutionary algorithm and variable neighborhood search (VNS) is introduced.It consists of a population of solutions that evolution is performed by a variable neighborhood search operator, instead of the more usual reproduction operators, crossover and mutation used in evolutionary algorithms. It is an efficient search algorithm especially suitable for tremendous solution space. The proposed EVNS can simultaneously optimize the feature subset and the classifier through a common solution coding mechanism. This method was applied in searching the combinational gene signatures for predicting histologic response of chemotherapy on osteosarcoma patients, which is the most common malignant bone tumor in children. Cross-validation results show that EVNS outperforms the other existing approaches in classifying initial biopsy samples
    • …
    corecore