13,334 research outputs found

    Gene Network Modeling through Semi-Fixed Bayesian Network

    Get PDF
    Abstract. Gene networks describe functional pathways in a given cell or tissue, representing processes such as metabolism, gene expression regulation, protein or RNA transport. Thus, learning gene network is a crucial problem in the post genome era. Most existing works learn gene networks by assuming one gene provokes the expression of another gene directly leading to an over-simplified model. In this paper, we show that the gene regulation is a complex problem with many hidden variables. We propose a semi-fixed model to represent the gene network as a Bayesian network with hidden variables. In addition, an effective algorithm to learn the model is presented. Experiments on artificial and real-life dataset confirm the effectiveness of our approach

    Inferring a Transcriptional Regulatory Network from Gene Expression Data Using Nonlinear Manifold Embedding

    Get PDF
    Transcriptional networks consist of multiple regulatory layers corresponding to the activity of global regulators, specialized repressors and activators of transcription as well as proteins and enzymes shaping the DNA template. Such intrinsic multi-dimensionality makes uncovering connectivity patterns difficult and unreliable and it calls for adoption of methodologies commensurate with the underlying organization of the data source. Here we present a new computational method that predicts interactions between transcription factors and target genes using a compendium of microarray gene expression data and the knowledge of known interactions between genes and transcription factors. The proposed method called Kernel Embedding of REgulatory Networks (KEREN) is based on the concept of gene-regulon association and it captures hidden geometric patterns of the network via manifold embedding. We applied KEREN to reconstruct gene regulatory interactions in the model bacteria E.coli on a genome-wide scale. Our method not only yields accurate prediction of verifiable interactions, which outperforms on certain metrics comparable methodologies, but also demonstrates the utility of a geometric approach to the analysis of high-dimensional biological data. We also describe the general application of kernel embedding techniques to some other function and network discovery algorithms

    Modeling cumulative biological phenomena with Suppes-Bayes Causal Networks

    Get PDF
    Several diseases related to cell proliferation are characterized by the accumulation of somatic DNA changes, with respect to wildtype conditions. Cancer and HIV are two common examples of such diseases, where the mutational load in the cancerous/viral population increases over time. In these cases, selective pressures are often observed along with competition, cooperation and parasitism among distinct cellular clones. Recently, we presented a mathematical framework to model these phenomena, based on a combination of Bayesian inference and Suppes' theory of probabilistic causation, depicted in graphical structures dubbed Suppes-Bayes Causal Networks (SBCNs). SBCNs are generative probabilistic graphical models that recapitulate the potential ordering of accumulation of such DNA changes during the progression of the disease. Such models can be inferred from data by exploiting likelihood-based model-selection strategies with regularization. In this paper we discuss the theoretical foundations of our approach and we investigate in depth the influence on the model-selection task of: (i) the poset based on Suppes' theory and (ii) different regularization strategies. Furthermore, we provide an example of application of our framework to HIV genetic data highlighting the valuable insights provided by the inferred

    An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the extended Kalman filter (EKF) algorithm is applied to model the gene regulatory network from gene time series data. The gene regulatory network is considered as a nonlinear dynamic stochastic model that consists of the gene measurement equation and the gene regulation equation. After specifying the model structure, we apply the EKF algorithm for identifying both the model parameters and the actual value of gene expression levels. It is shown that the EKF algorithm is an online estimation algorithm that can identify a large number of parameters (including parameters of nonlinear functions) through iterative procedure by using a small number of observations. Four real-world gene expression data sets are employed to demonstrate the effectiveness of the EKF algorithm, and the obtained models are evaluated from the viewpoint of bioinformatics

    Integrating heterogeneous knowledges for understanding biological behaviors: a probabilistic approach

    Get PDF
    Despite recent molecular technique improvements, biological knowledge remains incomplete. Reasoning on living systems hence implies to integrate heterogeneous and partial informations. Although current investigations successfully focus on qualitative behaviors of macromolecular networks, others approaches show partial quantitative informations like protein concentration variations over times. We consider that both informations, qualitative and quantitative, have to be combined into a modeling method to provide a better understanding of the biological system. We propose here such a method using a probabilistic-like approach. After its exhaustive description, we illustrate its advantages by modeling the carbon starvation response in Escherichia coli. In this purpose, we build an original qualitative model based on available observations. After the formal verification of its qualitative properties, the probabilistic model shows quantitative results corresponding to biological expectations which confirm the interest of our probabilistic approach.Comment: 10 page

    Stochastic dynamic modeling of short gene expression time-series data

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the expectation maximization (EM) algorithm is applied for modeling the gene regulatory network from gene time-series data. The gene regulatory network is viewed as a stochastic dynamic model, which consists of the noisy gene measurement from microarray and the gene regulation first-order autoregressive (AR) stochastic dynamic process. By using the EM algorithm, both the model parameters and the actual values of the gene expression levels can be identified simultaneously. Moreover, the algorithm can deal with the sparse parameter identification and the noisy data in an efficient way. It is also shown that the EM algorithm can handle the microarray gene expression data with large number of variables but a small number of observations. The gene expression stochastic dynamic models for four real-world gene expression data sets are constructed to demonstrate the advantages of the introduced algorithm. Several indices are proposed to evaluate the models of inferred gene regulatory networks, and the relevant biological properties are discussed
    • …
    corecore