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Introduction
A number of diseases are characterized by the accumulation of 
genomic lesions in the DNA of a population of cells. Such 
lesions are often classified as mutations, if they involve one or 
few nucleotides, or chromosomal alterations, if they involve wider 
regions of a chromosome. The effect of these lesions, occurring 
randomly and inherited through cell divisions (ie, they are 
somatic), is that of inducing a phenotypic change in the cells. If 
the change is advantageous, then the clonal population might 
enjoy a f itness advantage over competing clones. In some cases, 
a natural selection process will tend to select the clones with 
more advantageous and inheritable traits. This particular pic-
ture can be framed in terms of Darwinian evolution as a sce-
nario of survival of the fittest where, however, the prevalence of 
multiple heterogeneous populations is often observed.1

Cancer and HIV are 2 diseases where the mutational (from 
now on, we will use the term mutation to refer to the types of 
genomic lesions mentioned above) load in the cancerours/viral 
population of cells increases over time and drives phenotypic 
switches and disease progression. In this article, we specifically 
focus on these diseases, but many biological systems present 
similar characteristics.2–4

The emergence and development of cancer can be charac-
terized as an evolutionary process involving a large population of 
cells, heterogeneous both in their genomes and in their epige-
nomes. In fact, genetic and epigenetic random alterations com-
monly occurring in any cell can occasionally be beneficial to the 

neoplastic cells and confer to these clones a functional selective 
advantage. During clonal evolution, clones are generally 
selected for increased proliferation and survival, which may 
eventually allow the cancer clones to outgrow the competing 
cells and, in turn, may lead to invasion and metastasis.5,6 By 
means of such a multistep stochastic process, cancer cells 
acquire over time a set of biological capabilities, ie, hallmarks.7,8 
However, not all the alterations are involved in this acquisition; 
as a matter of fact, in solid tumors, we observe an average of 33 
to 66 genes displaying somatic mutations.9 But only some of 
them are involved in the hallmark acquisition, ie, drivers, 
whereas the remaining ones are present in the cancer clones 
without increasing their f itness, ie, passengers.9

The onset of AIDS is characterized by the collapse of the 
immune system after a prolonged asymptomatic period, but 
its progression’s mechanistic basis is still unknown. It was 
recently hypothesized that the elevated turnover of lympho-
cytes throughout the asymptomatic period results in the 
accumulation of deleterious mutations, which impairs immu-
nological function, replicative ability, and viability of lympho-
cytes.10,11 The failure of the modern combination therapies 
(ie, highly active antiretroviral therapy) of the disease is 
mostly due to the capability of the virus to escape from drug 
pressure by developing drug resistance. This mechanism is 
determined by HIV’s high rates of replication and mutation. 
In fact, under fixed drug pressure, these mutations are 

Modeling Cumulative Biological Phenomena with 
Suppes-Bayes Causal Networks

Daniele Ramazzotti1, Alex Graudenzi2, Giulio Caravagna3 and  
Marco Antoniotti2
1Department of Pathology, Stanford University, Stanford, CA, USA. 2Department of Informatics, 
Systems and Communication, University of Milano-Bicocca, Milan, Italy. 3School of Informatics, 
University of Edinburgh, Edinburgh, UK.

ABSTRACT: Several diseases related to cell proliferation are characterized by the accumulation of somatic DNA changes, with respect to 
wild-type conditions. Cancer and HIV are 2 common examples of such diseases, where the mutational load in the cancerous/viral population 
increases over time. In these cases, selective pressures are often observed along with competition, co-operation, and parasitism among 
distinct cellular clones. Recently, we presented a mathematical framework to model these phenomena, based on a combination of Bayesian 
inference and Suppes’ theory of probabilistic causation, depicted in graphical structures dubbed Suppes-Bayes Causal Networks (SBCNs). The 
SBCNs are generative probabilistic graphical models that recapitulate the potential ordering of accumulation of such DNA changes during the 
progression of the disease. Such models can be inferred from data by exploiting likelihood-based model selection strategies with regularization. 
In this article, we discuss the theoretical foundations of our approach and we investigate in depth the influence on the model selection task 
of (1) the poset based on Suppes’ theory and (2) different regularization strategies. Furthermore, we provide an example of application of our 
framework to HIV genetic data highlighting the valuable insights provided by the inferred SBCN

KeywoRdS: cumulative, phenomena, Bayesian graphical models, probabilistic causality

ReCeIVed: January 11, 2018. ACCePTed: May 27, 2018.

TyPe: Algorithm Development for Evolutionary Biological Computation – Review

FuNdINg: The author(s) disclosed receipt of the following financial support for the 
research, authorship, and/or publication of this article: This work has been partially 
supported by grants from the SysBioNet project, an MIUR initiative for the Italian Roadmap 
of European Strategy Forum on Research Infrastructures (ESFRI).

deClARATIoN oF CoNFlICTINg INTeReSTS: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this 
article.

CoRReSPoNdINg AuTHoR: Daniele Ramazzotti, Department of Pathology, Stanford 
University, Stanford, CA 94305, USA.  Email: daniele.ramazzotti@stanford.edu

785167 EVB0010.1177/1176934318785167Evolutionary BioinformaticsRamazzotti et al
research-article2018

https://uk.sagepub.com/en-gb/journals-permissions
mailto:daniele.ramazzotti@stanford.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1176934318785167&domain=pdf&date_stamp=2018-07-04


2 Evolutionary Bioinformatics 

virtually nonreversible because they confer a strong selective 
advantage to viral populations.12,13

In the past decades, huge technological advancements led to 
the development of next-generation sequencing (NGS) tech-
niques. These allow, in different forms and with different tech-
nological characteristics, to read out genomes from single cells 
or bulk.14–17 Thus, we can use these technologies to quantify 
the presence of mutations in a sample. With these data at hand, 
we can therefore investigate the problem of inferring a progres-
sion model (PM) that recapitulates the ordering of accumula-
tion of mutations during disease origination and development.18 
This problem allows different formulations according to the 
type of diseases that we are considering, the type of NGS data 
that we are processing, and other factors. We point the reader 
to the works by Caravagna et al and Beerenwinkel et al18,19 for 
a review on PMs.

This work is focused on a particular class of mathematical 
models that are becoming successful to represent such muta-
tional ordering. These are called SBCNs (the first use of these 
networks appears in the work by Ramazzotti et  al,20 and its 
earliest formal definition in the work by Bonchi et  al21; 
SBCN21), and derived from a more general class of models, 
Bayesian Networks (BN22), that has been successfully exploited 
to model cancer and HIV progressions.23–25 The SBCNs are 
probabilistic graphical models that are derived within a statisti-
cal framework based on Patrick Suppes’26 theory of probabilistic 
causation. Thus, the main difference between standard BNs and 
SBCNs is the encoding in the model of a set of causal axioms 
that describe the accumulation process. Both SBCNs and BNs 
are generative probabilistic models that induce a distribution of 
observing a particular mutational signature in a sample. But, 
the distribution induced by an SBCN is also consistent with 
the causal axioms and, in general, is different from the distribu-
tion induced by a standard BN.20

Informally, SBCNs are BNs depicting a set of well-defined 
statistical relations between pairs of events. In fact, when a first 
event precedes a second event in the network (ie, there is an 
arrow starting from the first event and pointing toward the sec-
ond), this implies (1) a temporal relation where the first event 
happens invariably before the second, (2) statistical positive cor-
relation between the 2 events, and (3) relevance of the first 
event in terms of being statistically informative in explaining 
the occurrences of the second event.

The motivation for adopting a causal framework on top of 
standard BNs is that, in the particular case of cumulative bio-
logical phenomena, SBCNs allow better inferential algorithms 
and data analysis pipelines to be developed.18,20,27 Extensive 
studies in the inference of cancer progression have indeed 
shown that model selection strategies to extract SBCNs from 
NGS data achieve better performance than algorithms that 
infer BNs. In fact, SBCN’s inferential algorithms have higher 
rate of detection of true-positive ordering relations and higher 
rate of filtering out false-positive ones. In general, these 

algorithms also show better scalability, resistance to noise in the 
data, and ability to work with datasets with few samples.20,27

In this article, we give a formal definition of SBCNs, and we 
assess their relevance in modeling cumulative phenomena and 
investigate the influence of (1) Suppes’ poset and (2) distinct 
maximum likelihood regularization strategies for model selec-
tion. We do this by performing extensive synthetic tests in 
operational settings that are representative of different possible 
types of progressions and data-harbouring signals from hetero-
geneous populations.

Suppes-Bayes Causal Networks
Theories of causality enjoy an old and prolific literature com-
prising contributions from many fields. Among them, some of 
the most prominent results are due to the efforts by Judea 
Pearl,28 whose theories have gained a huge impact over the 
computational community. However, algorithms derived from 
this theory may sometimes lead to computational intractability. 
For this reason, in this work, we follow a different approach 
based on the theory of probabilistic causation by Patrick 
Suppes26 that is particularly effective in modeling cumulative 
phenomena, yet still being computationally tractable.

Suppes26 introduced the notion of prima facie causation. A 
prima facie relation between a cause u  and its effect v  is veri-
fied when the following 2 conditions are true: (1) temporal pri-
ority (TP), ie, any cause happens before its effect and (2) 
probability raising (PR), ie, the presence of the cause raises the 
probability of observing its effect.

Definition 1. Probabilistic causation.26 For any 2 events u  and v , 
occurring, respectively, at times tu  and tv , under the mild assump-
tions that 0 1< <P u P u( ), ( ) , the event u  is called a prima facie 
cause of v  if it occurs before and raises the probability of u , ie,

TP : t tu v<  (1)

PR P v u P v u: | |( ) > ( )  (2)

Although the notion of prima facie causation has known 
limitations in the context of the general theories of causality,29 
this formulation seems to intuitively characterize the dynamics 
of phenomena driven by the monotonic accumulation of events. 
In these cases, in fact, a temporal order among the events is 
implied and, furthermore, the occurrence of an early event posi-
tively correlates to the subsequent occurrence of a later one. 
Thus, this approach seems appropriate to capture the notion of 
selective advantage emerging from somatic mutations that 
accumulate during, eg, cancer or HIV progression.

Let us now consider a graphical representation of the afore-
mentioned dynamics in terms of a Bayesian graphical model.

Definition 2. Bayesian network.22 The pair  = 〈 〉G P,  is a BN, 
where G  is a directed acyclic graph (DAG) G V E= ( , )  of V  
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nodes and E  arcs, and P  is a distribution induced over the 
nodes by the graph. Let V v vn= …{ , , }1  be random variables 
and the edges/arcs E V V⊆ ×  encode the conditional depend-
encies among the variables. Define, for any v Vi ∈ , the parent 
set π ( ) { | }v x x v Ei i= → ∈ , then P  defines the joint probabil-
ity distribution induced by the BN as follows:

P v v P v vn i i
vi V

1, , | ( )…( ) = ( )
∈
∏ π  (3)

All in all, a BN is a statistical model which succinctly represents 
the conditional dependencies among a set of random variables V  
through a DAG. More precisely, a BN represents a factorization of 
the joint distribution P v vn( , , )1 ⊃  in terms of marginal (when 
π ( )v = ∅ ) and conditional probabilities P( | )⋅ ⋅ .

We now consider a common situation when we deal with 
data (ie, observations) obtained at one (or a few) points in time, 
rather than through a time line. In this case, we are resticted to 
work with cross-sectional data, where no explicit information of 
time is provided. Therefore, we can model the dynamics of 
cumulative phenomena by means of a specific set of the general 
BNs where the nodes V  represent the accumulating events as 
Bernoulli random variables taking values in {0, 1} based on their 
occurrence: the value of the variable is 1  if the event is observed 
and 0  otherwise. We then define a data set D  of s  cross-sec-
tional samples over n  Bernoulli random variables as follows:
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To extend BNs to account for Suppes’ theory of probabilistic 
causation, we need to estimate for any variable v V∈  its timing 
tv . Because we are dealing with cumulative phenomena and, in 
the most general case, data that do not harbor any evident tempo-
ral information, we can use the marginal probability P v( )  as a 
proxy for tv  (see also the commentary at the end of this section). 
(In many cases, the data that we can access are cross-sectional, 
meaning that the samples are collected at independent and 
unknown time points. For this reason, we have to resort on the 
simplest possible approach to estimate timings. However, in the 
case we were provided with explicit observations of time, the TP 
would be directly and, yet, more efficiently assessable.) In cancer 
and HIV, for instance, this makes sense because mutations are 
inherited through cells divisions and thus will fixate in the clonal 
populations during disease progression, ie, they are persistent.

Definition 3. SBCN.21 A BN   is an SBCN if and only if, for 
any edge v v Ei j→ ∈ , Suppes’ conditions (Definition 1) 
hold, that is,

P v P v P v v P v vi j j i j i( ) ( ) ( ) ¬( )> >and | |  (5)

It should be noted that SBCNs and BNs have the same like-
lihood function. Thus, SBCNs do not embed any constraint of the 
cumulative process in the likelihood computation, whereas 
approaches based on cumulative BNs do.25 Instead, the struc-
ture of the model, E , is consistent with the causal model à-la-
Suppes and, of course, this in turn reflects in the induced 
distribution. Even though this difference seem subtle, this is 
arguably the most interesting advantage of SBCNs over ad hoc 
BNs for cumulative phenomena.

Model selection to infer a network from data. The structure G  
of a BN (or of a SBCN) can be inferred from a data matrix D , 
as well as the parameters of the conditional distributions that 
define P . The model selection task is that of inferring such 
information from data; in general, we expect different models 
(ie, edges) if we infer a SBCN or a BN, as SBCNs encode 
Suppes’ additional constraints.

The general structural learning, ie, the model selection problem, 
for BNs is NP-HARD22; hence, one needs to resort on approxi-
mate strategies. For each BN  , a log-likelihood function ( )D E|  
can be used to search in the space of structures (ie, the set of edges 
E ), together with a regularization function ( )⋅  that penalizes 
overly complicated models. The network’s structure is then 
inferred by solving the following optimization problem:

E D E E∗ = −argmax
E

[ ( | ) ( )]L R  (6)

Moreover, the parameters of the conditional distributions 
can be computed by maximum-likelihood estimation for the set 
of edges E∗ ; the overall solution is locally optimal.22

Model selection for SBCNs works in this very same way but 
constrains the search for valid solutions.20 In particular, it scans 
only the subset of edges that are consistent with Definition 1, 
whereas a BN search will look for the full V V×  space. To filter 
pairs of edges, Suppes’ conditions can be estimated from the 
data with solutions based, for instance, on bootstrap esti-
mates.20 The resulting model will satisfy, by construction, the 
conditions of probabilistic causation. It has been shown that if 
the underlying phenomenon that produced our data is charac-
terised by an accumulation, then the inference of an SBCN, 
rather than a BN, leads to much better precision and recall.20,27

We conclude this section by discussing in detail the charac-
teristics of the SBCNs and, in particular, to which extent they 
are capable of modeling cumulative phenomena.

Temporal priority. Suppes’ first constraint (“event u  is tem-
porally preceding event v ,” Definition 1) assumes an underly-
ing temporal (partial) order TP  among the events/variables of 
the SBCN that we need to compute.

Cross-sectional data, unfortunately, are not provided with 
an explicit measure of time and hence TP  needs to be esti-
mated from data D  (we notice that in the case we were pro-
vided with explicit observations of time, TP  would be directly 
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and, yet, more efficiently assessable). The cumulative nature of 
the phenomenon that we want to model leads to a simple esti-
mation of TP : the temporal priority TP is assessed in terms of 
marginal frequencies20:

v v P v P vj TP i i j ⇐ ( ) > ( )  (7)

Thus, more frequent events, ie, vi , are assumed to occur 
earlier, which is sound when we assume the accumulating 
events to be irreversible.

Temporal priority is combined with PR to complete Suppes’ 
conditions for prima facie (see below). Its contribution is fun-
damental for model selection, as we now elaborate.

First of all, recall that the model selection problem for BNs 
is in general NP-HARD,22 and that, as a result of the assess-
ment of Suppes’ conditions (TP and PR), we constrain our 
search space to the networks with a given order. Because of 
time irreversibility, marginal distributions induce a total order-
ing TP  on the vi , ie, reflexing ⩽. Learning BNs given a fixed 
order —even partial22—of the variables bounds the cardi-
nality of the parent set as follows:

| ( )| | { | }|π v v v vx j x j≤   (8)

and, in general, it make inference easier than the general case.22 
Thus, by constraining Suppes’ conditions via TP

,s  total 
ordering, we drop down the model selection complexity. It 
should be noted that, after model selection, the ordering among 
the variables that we practically have in the selected arcs set E  
is in general partial; in the BN literature, this is sometimes 
called poset.

Probability raising. Besides TP, as a second constraint we 
further require that the arcs are consistent with the condition 
of PR: this leads to another relation PR . Probability raising is 
equivalent to constraining for positive statistical dependence27:

v v
P v v P v v
P v v P v P v

j PR i

j i j i

i i i j



⇐ ( ) > ( )
⇐ ( ) > ( ) ( )

| |
,

  (9)

Thus, we model all and only the positive dependant relations. 
Definition 1 is thus obtained by selecting those PR relations 
that are consistent with TP

 TP PR∩  (10)

as the core of Suppes’ characterization of causation is 
relevant.26

If TP  reduces the search space of the possible valid struc-
tures for the network by setting a specific total order to the 
nodes, PR  instead reduces the search space of the possible 
valid parameters of the network by requiring that the related 
conditional probability tables, ie, P( )⋅ , account only for positive 

statistical dependencies. It should be noted that these con-
straints affect the structure and the parameters of the model, but 
the likelihood function is the same for BNs and SBCNs.

Network simplif ication, regularization, and spurious causality. 
Suppes’26 criteria are known to be necessary but not sufficient 
to evaluate general causal claims. Even if we restrict to causal 
cumulative phenomena, the expressivity of probabilistic causal-
ity needs to be taken into account.

When dealing with small sample sized data sets (ie, small 
m ), many pairs of variables that satisfy Suppes’ condition may 
be spurious causes, ie, false positive. (An edge is spurious when it 
satisfies Definition 1, but it is not actually the true model edge. 
For instance, for a linear model u v w→ → , transitive edge 
u w→  is spurious. Small m  induces further spurious associa-
tions in the data, not necessarily related to particular topologi-
cal structures.). False negatives should be few and mostly due to 
noise in the data. Thus, it follows the following:

•• We expect all the “statistically relevant” relations to be 
also prima facie20;

•• We need to filter out spurious causality instances (a 
detailed account of these topics, the particular types of 
spurious structures, and their interpretation for different 
types of models are available in Ramazzotti and col-
leagues20,27,30), as we know that prima facie overfits.

A model selection strategy which exploits a regularization 
schema seems thus the best approach to the task. Practically, 
this strategy will select simpler (ie, sparse) models according to 
a penalized likelihood f it criterion—for this reason, it will filter 
out edges proportionally to how much the regularization is 
stringent. Also, it will rank spurious association according to a 
criterion that is consistent with Suppes’ intuition of causality, as 
likelihood relates to statistical (in)dependence. Alternatives 
based on likelihood itself, ie, without regularization, do not 
seem viable to minimize the effect of likelihood’s overfit, that 
happens unless m →∞ .22 In fact, one must recall that due to 
statistical noise and sample size, exact statistical (in)depend-
ence between pair of variables is never (or very unlikely) 
observed.

Modeling heterogeneous populations

Complex biological processes, eg, proliferation, nutrition, apopto-
sis, are orchestrated by multiple cooperative networks of pro-
teins and molecules. Therefore, different “mutants” can evade 
such control mechanisms in different ways. Mutations happen 
as a random process that is unrelated to the relative fitness 
advantage that they confer to a cell. As such, different cells will 
deviate from wild type by exhibiting different mutational signa-
tures during disease progression. This has an implication for 
many cumulative diseases that arise from populations that are 
heterogeneous, both at the level of the single patient (intrapatient 
heterogeneity) and in the population of patients (interpatient 
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heterogeneity). Heterogeneity introduces significant challenges 
in designing effective treatment strategies, and major efforts are 
ongoing at deciphering its extent for many diseases such as can-
cer and HIV.18,20,28

We now introduce a class of mathematical models that are 
suitable at modeling heterogenous progressions. These models 
are derived by augmenting BNs with logical formulas and are 
called monotonic progression networks (MPNs).31,32 The MPNs 
represent the progression of events that accumulate monotoni-
cally (the events accumulate over time and when later events 
occur earlier events are observed as well) over time, where the 
conditions for any event to happen is described by a probabil-
istic version of the canonical boolean operators, ie, conjunction 
( )∧ , inclusive disjunction ( )∨ , and exclusive disjunction ( )⊕ .

Following Farahani and Lagergren31 and Korsunsky et al,32 
we define 1 type of MPNs for each boolean operator: the con-
junctive (CMPN), the disjunctive semimonotonic (DMPN), and 
the exclusive disjunction (XMPN). The operator associated with 
each network type refers to the logical relation among the par-
ents that eventually lead to the common effect to occur.

Definition 4. Monotonic Progression Networks.31,32 The MPNs 
are BNs that, for θ ε, [ , ]∈ 0 1  and θ ε , satisfy the conditions 
shown in Table 1 for each v V∈ .

Here, θ  represents the conditional probability of any 
“effect” to follow its preceding “cause” and ε  models the prob-
ability of any noisy observation—that is the observation of a 
sample where the effects are observed without their causes. 
Note that the above inequalities define, for each type of MPN, 
specific constraints to the induced distributions. These are 
sometimes termed, according to the probabilistic logical rela-
tions, noisy-AND, noisy-OR, and noisy-XOR networks.28,32

Model selection with heterogeneous populations. When dealing 
with heterogeneous populations, the task of model selection, 
and, more in general, any statistical analysis, are non-trivial. 
One of the main reasons for this state of affairs is the emer-
gence of statistical paradoxes such as Simpson’s paradox.33,34 
This phenomenon refers to the fact that sometimes, associa-
tions among dichotomous variables, which are similar within 
subgroups of a population, eg, women and men, change their 
statistical trend if the individuals of the subgroups are pooled 
together. Let us know recall a famous example to this regard. 
The admissions of the University of Berkeley for the fall of 

1973 showed that men applying were much more likely than 
women to be admitted with a difference that was unlikely to be 
due to chance. But, when looking at the individual departments 
separately, it emerged that 6 out of 85 were indead biased in 
favor of women, whereas only 4 presented a slighly bias against 
them. The reason for this inconsistency was due to the fact that 
women tended to apply to competitive departments which had 
low rates of admissions, whereas men tended to apply to less-
competitive departments with high rates of admissions, leading 
to an apparent bias toward them in the overall population.35

Similar situations may arise in cancer when different popu-
lations of cancer samples are mixed. As an example, let us con-
sider an hypothetical progression leading to the alteration of 
gene e . Let us now assume that the alterations of this gene 
may be due to the previous alterations of either gene c1  or gene 
c2  exclusively. If this was the case, then we would expect a 
significant pattern of selective advantage from any of its causes 
to e  if we were able to stratify the patients accordingly to either 
alteration c1  or c2 , but we may lose these associations when 
looking at all the patients together.

In the work by Ramazzotti et al,20 the notion of progression 
pattern is introduced to describe this situation, defined as a 
boolean relation among all the genes, members of the parent set 
of any node as the ones defined by MPNs. To this extent, the 
authors extend Suppes’ definition of prima facie causality to 
account for such patterns rather than for relations among atomic 
events as for Definition 1. Also, they claim that general MPNs 
can be learned in polynomial time provided that the data set 
given as input is lifted 20 with a Bernoulli variable per causal rela-
tion representing the logical formula involving any parent set.

Following Ramazzotti and colleagues,20,30 we now consider 
any formula in conjunctive normal form (CNF):

ϕ = ∧…∧c cn1

where each ci  is a disjunctive clause ci i i kc c= ∨…∨, ,1  over a set 
of literals and each literal represents an event (a Boolean vari-
able) or its negation. By following analogous arguments as the 
ones used before, we can extend Definition 1 as follows.

Definition 5. CNF probabilistic causation.20,30 For any CNF 
formula ϕ  and e , occurring, respectively, at times tϕ  and te , 
under the mild assumptions that 0 1< <P P e( ), ( )ϕ , ϕ  is a 
prima facie cause of e  if

Table 1. Definitions for CMPN, DMPN, and XMPN.

CMPN :P v v v P v v vπ π θ π π ε( ) =| ( ) = ( ) <| ( )∑ ∑













 ≤ (11)

DMPN :P v v P v vπ θ π ε( ) > 0 ( ) 0∑ ∑





 = =






 ≤ (12)

XMPN :P v v P v vπ θ π ε( ) 1 ( ) 1=





 = ≠






 ≤∑ ∑ (13)
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t t P e P eeϕ ϕ ϕ< ( ) > ( )and | |   (14)

Given these premises, we can now define the extended 
SBCNs, an extension of SBCNs which allows to model heter-
ogeneity as defined probabilistically by MPNs.

Definition 6. Extended SBCN. A BN   is an extended SBCN 
if and only if, for any edge ϕi jv E→ ∈ , Suppes’ generalized 
conditions (Definition 5) hold, that is,

P P v P v v P v vi j j jϕ ϕ ϕ( ) > ( ) ( ) > ¬( )and | |  (15)

Evaluation on Simulated Data
We now evaluate the performance of the inference of SBCN 
on simulated data, with specific attention on the impact of the 
constraints based on Suppes’ probabilistic causation on the 
overall performance. All the simulations are performed with 
the following settings.

We consider 6 different topological structures: the first 2 
where any node has at the most one predecessor, ie, (1) trees, (2) 
forests, and the others where we set a limit of 3 predecessors and, 
hence, we consider (3) DAGs with a single source and conjunc-
tive parents, (4) DAGs with multiple sources and conjunctive 
parents, (5) DAGs with a single source and disjunctive parents, 
and (6) DAGs with multiple sources and disjunctive parents. For 
each of these configurations, we generate 100 random structures.

Moreover, we consider 4 different sample sizes (50, 100, 
150, and 200 samples) and 9 noise levels (ie, probability of a 
random entry for the observation of any node in a sample) 
from 0% to 20% with step 2.5%. Furthermore, we repeat the 
above settings for networks of 10 and 15 nodes. Any 

configuration is then sampled 10 times independently, for a 
total of more than 4 million distinct simulated data sets.

The sequencing quality of mutation profiling for diseases 
such as cancer and HIV depends on multiple factors such as, 
but not limited to, depth and coverage of the sequencing. In 
this work, we introduced errors in the data by means of a ran-
dom model of noise. A detailed analysis of how more sophisti-
cated models of noise can affect the inference is out of the 
scope of this study and left for future works.

Finally, the inference of the structure of the SBCN is  
performed using the algorithm proposed in the work  
by Ramazzotti et  al20 and the performance is assessed  
in terms of accuracy TP TN TP TN FP FN= + + + +( ) / ( ) , 
sensitivity TP TP FN= +/ ( ), and specificity TN FP TN= +/ ( )  
with TP  and FP  being the true and false positive (we define 
as positive any arc that is present in the network) and TN  and 
FN  being the true and false negative (we define negative any 
arc that is not present in the network). All these measures are 
values in [0,1]  with results close to 1 indicators of good 
performance.

In Figures 1 to 3, we show the performance of the inference 
on simulated data sets of 100 samples and networks of 15 nodes 
in terms of accurancy, sensitivity, and specificity for different set-
tings which we discuss in detail in the next paragraphs.

Suppes’ prima facie conditions are necessary but not sufficient. We 
first discuss the performance by applying only the prima facie cri-
teria and we evaluate the obtained prima facie network in terms 
of accurancy, sensitivity, and specificity on simulated data sets of 
100 samples and networks of 15 nodes (see Figures 1 to 3). As 
expected, the sensitivity is much higher than the specificity 
implying the significant impact of false positives rather than false 
negatives for the networks of the prima facie arcs. This result is 

Figure 1. Performance of the inference on simulated data sets of 100 samples and networks of 15 nodes in terms of accurancy for the 6 considered 

topological structures. The y-axis refers to the performance, whereas the x-axis represents the different noise levels.
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indeed expected being Suppes’ criteria mostly capable of remov-
ing some of the arcs which do not represent valid causal relations 
rather than assess the exact set of valid arcs. Interestingly, the false 
negatives are still limited even when we consider DMPN, ie, 
when we do not have guarantees for the algorithm of Ramazzotti 
et al20 to converge. The same simulations with different sample 
sizes (50, 150, and 200 samples) and on networks of 10 nodes 
present a similar trend (results not shown here).

The likelihood score overfits the data. In Figures 1 to 3, we also 
show the performance of the inference by likelihood fit (without 
any regularizator) on the prima facie network in terms of accur-
ancy, sensitivity, and specificity on simulated data sets of 100 

samples and networks of 15 nodes. Once again, in general, sensi-
tivity is much higher than specificity implying also in this case a 
significant impact of false positives rather than false negatives for 
the inferred networks. These results make explicit the need for a 
regularization heuristic when dealing with real (not infinite) 
sample sized data sets as discussed in the next paragraph. 
Another interesting consideration comes from the observation 
that the prima facie networks and the networks inferred via like-
lihood fit without regularization seem to converge to the same 
performance as the noise level increases. This is due to the fact 
that, in general, the prima facie constraints are very conservative 
in the sense that false positives are admitted as long as false 

Figure 2. Performance of the inference on simulated data sets of 100 samples and networks of 15 nodes in terms of sensitivity for the 6 considered 

topological structures. The y-axis refers to the performance, whereas the x-axis represents the different noise levels.

Figure 3. Performance of the inference on simulated data sets of 100 samples and networks of 15 nodes in terms of specificity for the 6 considered 

topological structures. The y-axis refers to the performance while the x-axis represents the different noise levels.
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negatives are limited. When the noise level increases, the positive 
dependencies among nodes are generally reduced and, hence, 
less arcs pass the prima facie cut for positive dependency. Also in 
this case, the same simulations with different sample sizes (50, 
150, and 200 samples) and on networks of 10 nodes present a 
similar trend (results not shown here).

Model selection with different regularization strategies. We 
now investigate the role of different regularizations on the per-
formance. In particular, we consider 2 commonly used regulari-
zations: (1) the Bayesian information criterion (BIC)36 and (2) 
the Akaike information criterion (AIC).37

Although BIC and AIC are both scores based on maximum 
likelihood estimation and a penalization term to reduce overfit-
ting, yet with distinct approaches, they produce significantly dif-
ferent behaviors. More specifically, BIC assumes the existence of 
one true statistical model which is generating the data, whereas 
AIC aims at finding the best approximating model to the 
unknown data-generating process. As such, BIC may likely 
underfit, whereas, conversely, AIC might overfit. (Thus, BIC 
tends to make a trade-off between the likelihood and model 
complexity with the aim of inferring the statistical model which 
generates the data. This makes it useful when the purpose is to 
detect the best model describing the data. Instead, asymptoti-
cally, minimizing AIC is equivalent to minimizing the cross vali-
dation value.38 It is this property that makes the AIC score useful 
in model selection when the purpose is prediction. Overall, the 
choice of the regularizator tunes the level of sparsity of the 
retrieved SBCN and, yet, the confidence of the inferred arcs.)

The performance on simulated data sets are shown in 
Figures 1 to 3. In general, the performance is improved in all 
the settings with both regularizators, as they succeed in shrink-
ing toward sparse networks.

Furthermore, we observe that the performance obtained by 
SBCNs is still good even when we consider simulated data 
generated by DMPN. Although in this case we do not have any 
guarantee of convergence, in practice, the algorithm seems 

efficient in approximating the generative model. In conclusion, 
without any further input, SBCNs can model CMPNs and, 
yet, depict the more significant arcs of DMPNs. To infer 
XMPN, the data set needs to be lifted.20

The same simulations with different sample sizes (50, 150, 
and 200 samples) and on networks of 10 nodes present a simi-
lar trend (results not shown here).

Application to HIV Genetic Data
We now present an example of application of our framework 
on HIV genomic data. In particular, we study drug resistance in 
patients under antiretroviral therapy and we select a set of 7 
amino acid alterations in the HIV genome to be depicted in 
the resulting graphical model, namely, K R20 , M I36 , M I46 , 
I V54 , A V71 , V A82 , I V84 , where, as an example, the 
genomic event K R20  describes a mutation from lysine (K) to 
arginine (R) at position 20 of the HIV protease.

In this study, we consider data sets from the Stanford HIV 
Drug Resistance Database39 for 2 protease inhibitors, ritonavir 
(RTV) and indinavir (IDV). The first data set consists of 179 
samples (see Figure 4) and the second of 1035 samples (see 
Figure 4).

We then infer a model on these data sets by both BN and 
SBCN. We show the results in Figures 5 where each node rep-
resents a mutation and the scores on the arcs measure the con-
fidence in the found relation by nonparametric bootstrap.

In this case, it is interesting to observe that the set of depend-
ency relations (ie, any pair of nodes connected by an arc, without 
considering its direction) depicted both by SBCNs and BNs is 
very similar, with the main difference being the direction of some 
connection. This difference is expected and can be attributed to 
the constrain of TP adopted in the SBCNs. Furthermore, we also 
observe that most of the found relations in the SBCN are more 
confident (ie, higher bootstrap score) than the one depicted in the 
related BN, leading us to observe a higher statistical confidence in 
the models inferred by SBCNs.

Figure 4. Mutations detected in the genome for 179 patients with HIV under ritonavir (top) and 1035 under indinavir (bottom). Each black rectangle 

denotes the presence of a mutation in the gene annotated to the right of the plot; percentages correspond to marginal probabilities.
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Conclusions
In this work, we investigated the properties of a constrained 
version of BN, named SBCN, which is particularly sound in 
modeling the dynamics of system driven by the monotonic 
accumulation of events, thanks to encoded poset based on 
Suppes’ theory of probabilistic causation. In particular, we 
showed how SBCNs can, in general, describe different types of 
MPN, which makes them capable of characterizing a broad 
range of cumulative phenomena not limited to cancer evolu-
tion and HIV drug resistance.

Besides, we investigated the influence of Suppes’ poset on 
the inference performance with cross-sectional synthetic data 
sets. In particular, we showed that Suppes’ constraints are effec-
tive in defining a partially order set accounting for accumulat-
ing events, with very few false negatives, yet many false positives. 
To overcome this limitation, we explored the role of 2 maxi-
mum likelihood regularization parameters, ie, BIC and AIC, 
the former being more suitable to test previously conjectured 
hypotheses and the latter to predict novel hypotheses.

Finally, we showed on a data set of HIV genomic data how 
SBCN can be effectively adopted to model cumulative phe-
nomena, with results presenting a higher statistical significance 
compared with standard BNs.
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