3 research outputs found

    Investigating data mining techniques for extracting information from Alzheimer\u27s disease data

    Get PDF
    Data mining techniques have been used widely in many areas such as business, science, engineering and more recently in clinical medicine. These techniques allow an enormous amount of high dimensional data to be analysed for extraction of interesting information as well as the construction of models for prediction. One of the foci in health related research is Alzheimer\u27s disease which is currently a non-curable disease where diagnosis can only be confirmed after death via an autopsy. Using multi-dimensional data and the applications of data mining techniques, researchers hope to find biomarkers that will diagnose Alzheimer\u27s disease as early as possible. The primary purpose of this research project is to investigate the application of data mining techniques for finding interesting biomarkers from a set of Alzheimer\u27s disease related data. The findings from this project will help to analyse the data more effectively and contribute to methods of providing earlier diagnosis of the disease

    Gene Expression Data Analysis Using a Novel Approach to Biclustering Combining Discrete and Continuous Data

    No full text
    Many different methods exist for pattern detection in gene expression data. In contrast to classical methods, biclustering has the ability to cluster a group of genes together with a group of conditions (replicates, set of patients, or drug compounds). However, since the problem is NP-complex, most algorithms use heuristic search functions and, therefore, might converge toward local maxima. By using the results of biclustering on discrete data as a starting point for a local search function on continuous data, our algorithm avoids the problem of heuristic initialization. Similar to Order-Preserving Submatrices (OPSM), our algorithm aims to detect biclusters whose rows and columns can be ordered such that row values are growing across the bicluster's columns and vice versa. Results have been generated on the yeast genome (Saccharomyces cerevisiae), a human cancer data set, and random data. Results on the yeast genome showed that 89 percent of the 100 biggest nonoverlapping biclusters were enriched with Gene Ontology annotations. A comparison with the methods OPSM and Iterative Signature Algorithm (ISA, a generalization of singular value decomposition) demonstrated a better efficiency when using gene and condition orders. We present results on random and real data sets that show the ability of our algorithm to capture statistically significant and biologically relevant biclusters

    Gene Expression Data Analysis Using a Novel Approach to Biclustering Combining Discrete and Continuous Data

    No full text
    corecore