6,550 research outputs found

    Functional Regression

    Full text link
    Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article will focus on functional regression, the area of FDA that has received the most attention in applications and methodological development. First will be an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: [1] functional predictor regression (scalar-on-function), [2] functional response regression (function-on-scalar) and [3] function-on-function regression. For each, the role of replication and regularization will be discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. At the end is a brief discussion describing potential areas of future development in this field

    Optimal Bayes Classifiers for Functional Data and Density Ratios

    Full text link
    Bayes classifiers for functional data pose a challenge. This is because probability density functions do not exist for functional data. As a consequence, the classical Bayes classifier using density quotients needs to be modified. We propose to use density ratios of projections on a sequence of eigenfunctions that are common to the groups to be classified. The density ratios can then be factored into density ratios of individual functional principal components whence the classification problem is reduced to a sequence of nonparametric one-dimensional density estimates. This is an extension to functional data of some of the very earliest nonparametric Bayes classifiers that were based on simple density ratios in the one-dimensional case. By means of the factorization of the density quotients the curse of dimensionality that would otherwise severely affect Bayes classifiers for functional data can be avoided. We demonstrate that in the case of Gaussian functional data, the proposed functional Bayes classifier reduces to a functional version of the classical quadratic discriminant. A study of the asymptotic behavior of the proposed classifiers in the large sample limit shows that under certain conditions the misclassification rate converges to zero, a phenomenon that has been referred to as "perfect classification". The proposed classifiers also perform favorably in finite sample applications, as we demonstrate in comparisons with other functional classifiers in simulations and various data applications, including wine spectral data, functional magnetic resonance imaging (fMRI) data for attention deficit hyperactivity disorder (ADHD) patients, and yeast gene expression data

    Joint modeling of longitudinal drug using pattern and time to first relapse in cocaine dependence treatment data

    Full text link
    An important endpoint variable in a cocaine rehabilitation study is the time to first relapse of a patient after the treatment. We propose a joint modeling approach based on functional data analysis to study the relationship between the baseline longitudinal cocaine-use pattern and the interval censored time to first relapse. For the baseline cocaine-use pattern, we consider both self-reported cocaine-use amount trajectories and dichotomized use trajectories. Variations within the generalized longitudinal trajectories are modeled through a latent Gaussian process, which is characterized by a few leading functional principal components. The association between the baseline longitudinal trajectories and the time to first relapse is built upon the latent principal component scores. The mean and the eigenfunctions of the latent Gaussian process as well as the hazard function of time to first relapse are modeled nonparametrically using penalized splines, and the parameters in the joint model are estimated by a Monte Carlo EM algorithm based on Metropolis-Hastings steps. An Akaike information criterion (AIC) based on effective degrees of freedom is proposed to choose the tuning parameters, and a modified empirical information is proposed to estimate the variance-covariance matrix of the estimators.Comment: Published at http://dx.doi.org/10.1214/15-AOAS852 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Nonparametric Bayes modeling of count processes

    Get PDF
    Data on count processes arise in a variety of applications, including longitudinal, spatial and imaging studies measuring count responses. The literature on statistical models for dependent count data is dominated by models built from hierarchical Poisson components. The Poisson assumption is not warranted in many applications, and hierarchical Poisson models make restrictive assumptions about over-dispersion in marginal distributions. This article proposes a class of nonparametric Bayes count process models, which are constructed through rounding real-valued underlying processes. The proposed class of models accommodates applications in which one observes separate count-valued functional data for each subject under study. Theoretical results on large support and posterior consistency are established, and computational algorithms are developed using Markov chain Monte Carlo. The methods are evaluated via simulation studies and illustrated through application to longitudinal tumor counts and asthma inhaler usage

    Functional linear regression analysis for longitudinal data

    Full text link
    We propose nonparametric methods for functional linear regression which are designed for sparse longitudinal data, where both the predictor and response are functions of a covariate such as time. Predictor and response processes have smooth random trajectories, and the data consist of a small number of noisy repeated measurements made at irregular times for a sample of subjects. In longitudinal studies, the number of repeated measurements per subject is often small and may be modeled as a discrete random number and, accordingly, only a finite and asymptotically nonincreasing number of measurements are available for each subject or experimental unit. We propose a functional regression approach for this situation, using functional principal component analysis, where we estimate the functional principal component scores through conditional expectations. This allows the prediction of an unobserved response trajectory from sparse measurements of a predictor trajectory. The resulting technique is flexible and allows for different patterns regarding the timing of the measurements obtained for predictor and response trajectories. Asymptotic properties for a sample of nn subjects are investigated under mild conditions, as n→∞n\to \infty, and we obtain consistent estimation for the regression function. Besides convergence results for the components of functional linear regression, such as the regression parameter function, we construct asymptotic pointwise confidence bands for the predicted trajectories. A functional coefficient of determination as a measure of the variance explained by the functional regression model is introduced, extending the standard R2R^2 to the functional case. The proposed methods are illustrated with a simulation study, longitudinal primary biliary liver cirrhosis data and an analysis of the longitudinal relationship between blood pressure and body mass index.Comment: Published at http://dx.doi.org/10.1214/009053605000000660 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore