5 research outputs found

    On the expected improvement of odometry estimation in integrated exploration

    Full text link
    [EN] The problem of Integrated Exploration is the new trend in the construction of maps of unknown environments; in it, the old paradigm of Simultaneous Localization and Mapping (SLAM) is integrated with the planning of movements necessary for this task to be performed autonomously. However, although motion control is an essential part of this new paradigm, the existing literature has been limited to developing strategies that improve travel times and environmental coverage, leaving aside the impact that these can have on robot odometry and, consequently, on the requirements of localization algorithms. Accordingly, this document presents a new efficient way of exploring environments for the SLAM problem, which aims to improve exploration times and maximize coverage of the work area, as well as minimize the accumulated odometric error to simplify the localization process.[ES] El problema de Exploraci贸n integrada es la nueva tendencia en la construcci贸n de mapas de ambientes desconocidos; en ella, se integra el viejo paradigma de la localizaci贸n y mapeo simult谩neos (SLAM) con la planificaci贸n de movimientos necesarios, para que esta tarea sea realizada de forma aut贸noma. Sin embargo, aunque el control de movimientos es una parte esencial de este paradigma, los trabajos encontrados en la literatura se han limitado a desarrollar estrategias que mejoren los tiempos de recorridos y la cobertura del ambiente, dejado de lado el impacto que estos puede tener sobre la odometr铆a del robot y, en consecuencia, sobre los requerimientos de los algoritmos de localizaci贸n. De lo anterior, en este documento se presenta una nueva forma eficiente de exploraci贸n de ambientes para el problema de SLAM, que tiene como objetivo mejorar los tiempos de exploraci贸n y maximizar la cobertura del 谩rea de trabajo, pero adem谩s el de minimizar el error odom茅trico acumulado para simplificar el proceso de localizaci贸n.Toriz Palacios, A.; S谩nchez L贸pez, A. (2020). Sobre la mejora esperada de la estimaci贸n de la odometr铆a en Exploraci贸n Integrada. Revista Iberoamericana de Autom谩tica e Inform谩tica industrial. 17(2):229-238. https://doi.org/10.4995/riai.2019.11828OJS229238172Abbas, T., Arif, M., Ahmed, W., 2006. Measurement and correction of systematic odometry errors caused by kinematics imperfections in mobile robots. SICE-ICASE International Joint Conference, 2073-2078. https://doi.org/10.1109/SICE.2006.315554Borenstein, J., 1998. Experimental results from internal odometry error correction with the OmniMate mobile robot. IEEE Transactions on Robotics and Automation, 14(6), 963-969. https://doi.org/10.1109/70.736779Brossard, M., Bonnabel, S., 2018. Learning Wheel Odometry and IMU Errors for Localization. IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/ICRA.2019.8794237Burgard, W., Moors, M., Stachniss, C., Schneider, F. E., 2005. Coordinated multi-robot exploration. IEEE Transactions on robotics, 21(3), 376-386. https://doi.org/10.1109/TRO.2004.839232Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Leonard, J. J., 2016. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on robotics, 32(6), 1309-1332. https://doi.org/10.1109/TRO.2016.2624754Campos, F. M., Marques, M., Carreira, F., Calado, J. M. F., 2017. A complete frontier-based exploration method for Pose-SLAM. IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 79-84. https://doi.org/10.1109/ICARSC.2017.7964056Chen, N. Y., Shaw, J., Lin, H. I., 2017. Exploration method improvements of autonomous robot for a 2-D environment navigation. Journal of Marine Science and Technology, 25(1), 34-42. http://dx.doi.org/10.6119/2fJMST-016-0719-1Franchi, A., Freda, L., Oriolo, G., Vendittelli, M., 2007. A randomized strategy for cooperative robot exploration. IEEE International Conference on Robotics and Automation, 768-774. https://doi.org/10.1109/ROBOT.2007.363079Franchi, A., Freda, L., Oriolo, G., Vendittelli, M., 2009. The sensor-based random graph method for cooperative robot exploration. IEEE/ASME Transactions on Mechatronics, 14(2), 163-175. https://doi.org/10.1109/TMECH.2009.2013617Freda, L., Loiudice, F., Oriolo, G., 2006. A randomized method for integrated exploration. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2457-2464. https://doi.org/10.1109/IROS.2006.281689Gil, A., Juli谩, M., Reinoso, 脫., 2015. Occupancy grid based graph-SLAM using the distance transform, SURF features and SGD. Engineering Applications of Artificial Intelligence, 40, 1-10. https://doi.org/10.1016/j.engappai.2014.12.010H盲hnel, D., Thrun, S., Wegbreit, B., Burgard, W., 2005. Towards lazy data association in SLAM. Eleventh International Symposium Robotics Research, 421-431. https://doi.org/10.1007/11008941_45Hanif, M. S., Bilal, M., Munawar, K., Balamash, A. S., 2018. Implementation of an Embedded Testbed for Indoor SLAM. In 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), 1-8. https://doi.org/10.1109/AICCSA.2018.8612782Hidalgo-Carri贸, J., Hennes, D., Schwendner, J., Kirchner, F., 2017. Gaussian process estimation of odometry errors for localization and mapping. In 2017 IEEE International Conference on Robotics and Automation (ICRA), 5696-5701. https://doi.org/10.1109/ICRA.2017.7989670Holz, D., Basilico, N., Amigoni, F., Behnke, S., 2010. Evaluating the efficiency of frontier-based exploration strategies. In ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), 1-8.Jin, J., Chung, W., 2019. Obstacle Avoidance of Two-Wheel Differential Robots Considering the Uncertainty of Robot Motion on the Basis of Encoder Odometry Information. Sensors, 19(2), 289-299. https://doi.org/10.3390/s19020289Juli谩, M., Gil, A., Pay谩, L., Reinoso, O., 2008. Local minima detection in potential field based cooperative multirobot exploration. International Journal of Factory Automation, Robotics and Soft Computing, 3.Lamon, P., Siegwart, R., 2007. 3D position tracking in challenging terrain. The International Journal of Robotics Research, 26(2), 167-186. https://doi.org/10.1007/978-3-540-33453-8_44Lou, Q., Gonz谩lez, F., K枚vecses, J., 2019. Kinematic Modeling and State Estimation of Exploration Rovers. IEEE Robotics and Automation Letters, 4(2), 1311-1318. https://doi.org/10.1109/LRA.2019.2895393Maddahi, Y., Sepehri, N., Maddahi, A., Abdolmohammadi, M., 2012. Calibration of wheeled mobile robots with differential drive mechanisms: An experimental approach. Robotica. 30(6). https://doi.org/10.1017/S0263574711001329Maddahi, Y., 2018. Off-Line Calibration of Autonomous Wheeled Mobile Robots. In Handbook of Research on Biomimetics and Biomedical Robotics, 375-389. https://doi.org/10.4018/978-1-5225-2993-4.ch016Ojeda, L., Borenstein, J., 2004. Methods for the reduction of odometry errors in over-constrained mobile robots. Autonomous Robots, 16(3), 273-286. https://doi.org/10.1023/B:AURO.0000025791.45313.01Prieto, R. A., Cuadra-Troncoso, J. M., 脕lvarez-S谩nchez, J. R., Santosjuanes, I. N., 2013. Reactive Navigation and Online SLAM in Autonomous Frontier-Based Exploration. In International Work-Conference on the Interplay Between Natural and Artificial Computation, 45-55. https://doi.org/10.1007/978-3-642-38622-0_5Romero, L., Morales, E. F., Sucar, L. E., 2002. An exploration approach for indoor mobile robots reducing odometric errors. In Mexican International Conference on Artificial Intelligence, 51-60. https://doi.org/10.1007/3-540-46016-0_6Toriz P, A., S谩nchez L, A., Bedolla Cordero, J. M. E., 2017. The random exploration graph for optimal exploration of unknown environments. International Journal of Advanced Robotic Systems, 14(1). https://doi.org/10.1177/1729881416687110Torres-Gonz谩lez, A., Martinez-de Dios, J., Ollero, A., 2014. An adaptive scheme for robot localization and mapping with dynamically configurable inter-beacon range measurements. Sensors, 14(5), 7684-7710. DOI: 10.3390/s140507684 https://doi.org/10.3390/s140507684Yu, N., Wang, S., 2019. Enhanced Autonomous Exploration and Mapping of an Unknown Environment with the Fusion of Dual RGB-D Sensors. Engineering, 5(1), 164-172. https://doi.org/10.1016/j.eng.2018.11.01

    Learning Terrain Dynamics: A Gaussian Process Modeling and Optimal Control Adaptation Framework Applied to Robotic Jumping

    Get PDF
    The complex dynamics characterizing deformable terrain presents significant impediments toward the real-world viability of locomotive robotics, particularly for legged machines. We explore vertical, robotic jumping as a model task for legged locomotion on presumed-uncharacterized, nonrigid terrain. By integrating Gaussian process (GP)-based regression and evaluation to estimate ground reaction forces as a function of the state, a 1-D jumper acquires the capability to learn forcing profiles exerted by its environment in tandem with achieving its control objective. The GP-based dynamical model initially assumes a baseline rigid, noncompliant surface. As part of an iterative procedure, the optimizer employing this model generates an optimal control strategy to achieve a target jump height. Experiential data recovered from execution on the true surface model are applied to train the GP, in turn, providing the optimizer a more richly informed dynamical model of the environment. The iterative control-learning procedure was rigorously evaluated in experiment, over different surface types, whereby a robotic hopper was challenged to jump to several different target heights. Each task was achieved within ten attempts, over which the terrain's dynamics were learned. With each iteration, GP predictions of ground forcing became incrementally refined, rapidly matching experimental force measurements. The few-iteration convergence demonstrates a fundamental capacity to both estimate and adapt to unknown terrain dynamics in application-realistic time scales, all with control tools amenable to robotic legged locomotion
    corecore