49,472 research outputs found

    Deep Gaussian Processes

    Full text link
    In this paper we introduce deep Gaussian process (GP) models. Deep GPs are a deep belief network based on Gaussian process mappings. The data is modeled as the output of a multivariate GP. The inputs to that Gaussian process are then governed by another GP. A single layer model is equivalent to a standard GP or the GP latent variable model (GP-LVM). We perform inference in the model by approximate variational marginalization. This results in a strict lower bound on the marginal likelihood of the model which we use for model selection (number of layers and nodes per layer). Deep belief networks are typically applied to relatively large data sets using stochastic gradient descent for optimization. Our fully Bayesian treatment allows for the application of deep models even when data is scarce. Model selection by our variational bound shows that a five layer hierarchy is justified even when modelling a digit data set containing only 150 examples.Comment: 9 pages, 8 figures. Appearing in Proceedings of the 16th International Conference on Artificial Intelligence and Statistics (AISTATS) 201

    Bayesian modelling of latent Gaussian models featuring variable selection

    Get PDF
    PhD ThesisLatent Gaussian models are popular and versatile models for performing Bayesian inference. In many cases, these models will be analytically intractable creating a need for alternative inference methods. Integrated nested Laplace approximations (INLA) provides fast, deterministic inference of approximate posterior densities by exploiting sparsity in the latent structure of the model. Markov chain Monte Carlo (MCMC) is often used for Bayesian inference by sampling from a target posterior distribution. This suffers poor mixing when many variables are correlated, but careful reparameterisation or use of blocking methods can mitigate these issues. Blocking comes with additional computational overheads due to the matrix algebra involved; these costs can be limited by harnessing the same latent Markov structures and sparse precision matrix properties utilised by INLA, with particular attention paid to efficient matrix operations. We discuss how linear and latent Gaussian models can be constructed by combining methods for linear Gaussian models with Gaussian approximations. We then apply these ideas to a case study in detecting genetic epistasis between telomere defects and deletion of non-essential genes in Saccharomyces cerevisiae, for an experiment known as Quantitative Fitness Analysis (QFA). Bayesian variable selection is included to identify which gene deletions cause a genetic interaction. Previous Bayesian models have proven successful in detecting interactions but time-consuming due to the complexity of the model and poor mixing. Linear and latent Gaussian models are created to pursue more efficient inference over standard Gibbs samplers, but we find inference methods for latent Gaussian models can struggle with increasing dimension. We also investigate how the introduction of variable selection provides opportunities to reduce the dimension of the latent model structure for potentially faster inference. Finally, we discuss progress on a new follow-on experiment, Mini QFA, which attempts to find epistasis between telomere defects and a pair of gene deletions

    Deep Gaussian Processes

    Get PDF
    In this paper we introduce deep Gaussian process (GP) models. Deep GPs are a deep belief network based on Gaussian process mappings. The data is modeled as the output of a multivariate GP. The inputs to that Gaussian process are then governed by another GP. A single layer model is equivalent to a standard GP or the GP latent variable model (GP-LVM). We perform inference in the model by approximate variational marginalization. This results in a strict lower bound on the marginal likelihood of the model which we use for model selection (number of layers and nodes per layer). Deep belief networks are typically applied to relatively large data sets using stochastic gradient descent for optimization. Our fully Bayesian treatment allows for the application of deep models even when data is scarce. Model selection by our variational bound shows that a five layer hierarchy is justified even when modelling a digit data set containing only 150 examples

    Non-reversible Gaussian processes for identifying latent dynamical structure in neural data

    Get PDF
    A common goal in the analysis of neural data is to compress large population recordings into sets of interpretable, low-dimensional latent trajectories. This problem can be approached using Gaussian process (GP)-based methods which provide uncertainty quantification and principled model selection. However, standard GP priors do not distinguish between underlying dynamical processes and other forms of temporal autocorrelation. Here, we propose a new family of “dynamical” priors over trajectories, in the form of GP covariance functions that express a property shared by most dynamical systems: temporal non-reversibility. Non-reversibility is a universal signature of autonomous dynamical systems whose state trajectories follow consistent flow fields, such that any observed trajectory could not occur in reverse. Our new multi-output GP kernels can be used as drop-in replacements for standard kernels in multivariate regression, but also in latent variable models such as Gaussian process factor analysis (GPFA). We therefore introduce GPFADS (Gaussian Process Factor Analysis with Dynamical Structure), which models single-trial neural population activity using low-dimensional, non-reversible latent processes. Unlike previously proposed non-reversible multi-output kernels, ours admits a Kronecker factorization enabling fast and memory-efficient learning and inference. We apply GPFADS to synthetic data and show that it correctly recovers ground truth phase portraits. GPFADS also provides a probabilistic generalization of jPCA, a method originally developed for identifying latent rotational dynamics in neural data. When applied to monkey M1 neural recordings, GPFADS discovers latent trajectories with strong dynamical structure in the form of rotations
    • …
    corecore