19 research outputs found

    On the rate loss of multiple description source codes

    Get PDF
    The rate loss of a multiresolution source code (MRSC) describes the difference between the rate needed to achieve distortion D/sub i/ in resolution i and the rate-distortion function R(D/sub i/). This paper generalizes the rate loss definition to multiple description source codes (MDSCs) and bounds the MDSC rate loss for arbitrary memoryless sources. For a two-description MDSC (2DSC), the rate loss of description i with distortion D/sub i/ is defined as L/sub i/=R/sub i/-R(D/sub i/), i=1,2, where R/sub i/ is the rate of the ith description; the joint rate loss associated with decoding the two descriptions together to achieve central distortion D/sub 0/ is measured either as L/sub 0/=R/sub 1/+R/sub 2/-R(D/sub 0/) or as L/sub 12/=L/sub 1/+L/sub 2/. We show that for any memoryless source with variance /spl sigma//sup 2/, there exists a 2DSC for that source with L/sub 1//spl les/1/2 or L/sub 2//spl les/1/2 and a) L/sub 0//spl les/1 if D/sub 0//spl les/D/sub 1/+D/sub 2/-/spl sigma//sup 2/, b) L/sub 12//spl les/1 if 1/D/sub 0//spl les/1/D/sub 1/+1/D/sub 2/-1//spl sigma//sup 2/, c) L/sub 0//spl les/L/sub G0/+1.5 and L/sub 12//spl les/L/sub G12/+1 otherwise, where L/sub G0/ and L/sub G12/ are the joint rate losses of a Gaussian source with variance /spl sigma//sup 2/

    On the rate loss of multiple description source codes and additive successive refinement codes

    Get PDF
    The rate loss of a multi-resolution source code (MRSC) describes the difference between the rate needed to achieve distortion D/sub i/ in resolution i and the rate-distortion function R(D/sub i/). We generalize the rate loss definition and bound the rate losses of multiple description source codes (MDSCs) and additive MRSCs (AMRSCs). For a 2-description MDSC (2DSC), the rate loss of description i with distortion D/sub i/ is defined as L/sub i/=R/sub i/-R(D/sub i/), i=1, 2, where R/sub i/ is the rate of the ith description; the rate loss associated with decoding the two descriptions together to achieve central distortion D/sub 0/ is measured as L/sub 0/=R/sub 1/+R/sub 2/-R(D/sub 0/) or as L/sub 12/=L/sub 1/+L/sub 2/. We show that given an arbitrary source with variance /spl sigma//sup 2/, there exists a 2DSC with L/sub 1//spl les/0.5 and (a) L/sub 0//spl les/1 if D/sub 0//spl les/D/sub 1/+D/sub 2/-/spl sigma//sup 2/, (b) L/sub 12//spl les/1 if 1/D/sub 0//spl les/1/D/sub 1/+1/D/sub 2/-1//spl sigma//sup 2/, (c) L/sub 0//spl les/L/sub G0/+1.5 and L/sub 12//spl les/L/sub G12/+1 otherwise, where L/sub G0/ and L/sub G12/ are the joint rate losses of a normal (0, /spl sigma//sup 2/) source. An AMRSC is an MRSC with the kth-resolution reconstruction equal to the sum of the first k side reproductions of an MDSC. We obtain one bound on the rate loss of an AMRSC

    Multiple-Description Coding by Dithered Delta-Sigma Quantization

    Get PDF
    We address the connection between the multiple-description (MD) problem and Delta-Sigma quantization. The inherent redundancy due to oversampling in Delta-Sigma quantization, and the simple linear-additive noise model resulting from dithered lattice quantization, allow us to construct a symmetric and time-invariant MD coding scheme. We show that the use of a noise shaping filter makes it possible to trade off central distortion for side distortion. Asymptotically as the dimension of the lattice vector quantizer and order of the noise shaping filter approach infinity, the entropy rate of the dithered Delta-Sigma quantization scheme approaches the symmetric two-channel MD rate-distortion function for a memoryless Gaussian source and MSE fidelity criterion, at any side-to-central distortion ratio and any resolution. In the optimal scheme, the infinite-order noise shaping filter must be minimum phase and have a piece-wise flat power spectrum with a single jump discontinuity. An important advantage of the proposed design is that it is symmetric in rate and distortion by construction, so the coding rates of the descriptions are identical and there is therefore no need for source splitting.Comment: Revised, restructured, significantly shortened and minor typos has been fixed. Accepted for publication in the IEEE Transactions on Information Theor

    Source-Channel Diversity for Parallel Channels

    Full text link
    We consider transmitting a source across a pair of independent, non-ergodic channels with random states (e.g., slow fading channels) so as to minimize the average distortion. The general problem is unsolved. Hence, we focus on comparing two commonly used source and channel encoding systems which correspond to exploiting diversity either at the physical layer through parallel channel coding or at the application layer through multiple description source coding. For on-off channel models, source coding diversity offers better performance. For channels with a continuous range of reception quality, we show the reverse is true. Specifically, we introduce a new figure of merit called the distortion exponent which measures how fast the average distortion decays with SNR. For continuous-state models such as additive white Gaussian noise channels with multiplicative Rayleigh fading, optimal channel coding diversity at the physical layer is more efficient than source coding diversity at the application layer in that the former achieves a better distortion exponent. Finally, we consider a third decoding architecture: multiple description encoding with a joint source-channel decoding. We show that this architecture achieves the same distortion exponent as systems with optimal channel coding diversity for continuous-state channels, and maintains the the advantages of multiple description systems for on-off channels. Thus, the multiple description system with joint decoding achieves the best performance, from among the three architectures considered, on both continuous-state and on-off channels.Comment: 48 pages, 14 figure

    Colored-Gaussian Multiple Descriptions: Spectral and Time-Domain Forms

    Get PDF
    It is well known that Shannon's rate-distortion function (RDF) in the colored quadratic Gaussian (QG) case can be parametrized via a single Lagrangian variable (the "water level" in the reverse water filling solution). In this work, we show that the symmetric colored QG multiple-description (MD) RDF in the case of two descriptions can be parametrized in the spectral domain via two Lagrangian variables, which control the trade-off between the side distortion, the central distortion, and the coding rate. This spectral-domain analysis is complemented by a time-domain scheme-design approach: we show that the symmetric colored QG MD RDF can be achieved by combining ideas of delta-sigma modulation and differential pulse-code modulation. Specifically, two source prediction loops, one for each description, are embedded within a common noise shaping loop, whose parameters are explicitly found from the spectral-domain characterization.Comment: Accepted for publications in the IEEE Transactions on Information Theory. Title have been shortened, abstract clarified, and paper significantly restructure

    Multiple Description Quantization via Gram-Schmidt Orthogonalization

    Full text link
    The multiple description (MD) problem has received considerable attention as a model of information transmission over unreliable channels. A general framework for designing efficient multiple description quantization schemes is proposed in this paper. We provide a systematic treatment of the El Gamal-Cover (EGC) achievable MD rate-distortion region, and show that any point in the EGC region can be achieved via a successive quantization scheme along with quantization splitting. For the quadratic Gaussian case, the proposed scheme has an intrinsic connection with the Gram-Schmidt orthogonalization, which implies that the whole Gaussian MD rate-distortion region is achievable with a sequential dithered lattice-based quantization scheme as the dimension of the (optimal) lattice quantizers becomes large. Moreover, this scheme is shown to be universal for all i.i.d. smooth sources with performance no worse than that for an i.i.d. Gaussian source with the same variance and asymptotically optimal at high resolution. A class of low-complexity MD scalar quantizers in the proposed general framework also is constructed and is illustrated geometrically; the performance is analyzed in the high resolution regime, which exhibits a noticeable improvement over the existing MD scalar quantization schemes.Comment: 48 pages; submitted to IEEE Transactions on Information Theor
    corecore