10,651 research outputs found

    Gaussian processes for Bayesian classification via Hybrid Monte Carlo

    Get PDF
    The full Bayesian method for applying neural networks to a prediction problem is to set up the prior/hyperprior structure for the net and then perform the necessary integrals. However, these integrals are not tractable analytically, and Markov Chain Monte Carlo (MCMC) methods are slow, especially if the parameter space is high-dimensional. Using Gaussian processes we can approximate the weight space integral analytically, so that only a small number of hyperparameters need be integrated over by MCMC methods. We have applied this idea to classification problems, obtaining excellent results on the real-world problems investigated so far

    Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification

    Full text link
    Gaussian processes are a natural way of defining prior distributions over functions of one or more input variables. In a simple nonparametric regression problem, where such a function gives the mean of a Gaussian distribution for an observed response, a Gaussian process model can easily be implemented using matrix computations that are feasible for datasets of up to about a thousand cases. Hyperparameters that define the covariance function of the Gaussian process can be sampled using Markov chain methods. Regression models where the noise has a t distribution and logistic or probit models for classification applications can be implemented by sampling as well for latent values underlying the observations. Software is now available that implements these methods using covariance functions with hierarchical parameterizations. Models defined in this way can discover high-level properties of the data, such as which inputs are relevant to predicting the response

    Adaptive Multiple Importance Sampling for Gaussian Processes

    Get PDF
    In applications of Gaussian processes where quantification of uncertainty is a strict requirement, it is necessary to accurately characterize the posterior distribution over Gaussian process covariance parameters. Normally, this is done by means of standard Markov chain Monte Carlo (MCMC) algorithms. Motivated by the issues related to the complexity of calculating the marginal likelihood that can make MCMC algorithms inefficient, this paper develops an alternative inference framework based on Adaptive Multiple Importance Sampling (AMIS). This paper studies the application of AMIS in the case of a Gaussian likelihood, and proposes the Pseudo-Marginal AMIS for non-Gaussian likelihoods, where the marginal likelihood is unbiasedly estimated. The results suggest that the proposed framework outperforms MCMC-based inference of covariance parameters in a wide range of scenarios and remains competitive for moderately large dimensional parameter spaces.Comment: 27 page

    A New Monte Carlo Based Algorithm for the Gaussian Process Classification Problem

    Full text link
    Gaussian process is a very promising novel technology that has been applied to both the regression problem and the classification problem. While for the regression problem it yields simple exact solutions, this is not the case for the classification problem, because we encounter intractable integrals. In this paper we develop a new derivation that transforms the problem into that of evaluating the ratio of multivariate Gaussian orthant integrals. Moreover, we develop a new Monte Carlo procedure that evaluates these integrals. It is based on some aspects of bootstrap sampling and acceptancerejection. The proposed approach has beneficial properties compared to the existing Markov Chain Monte Carlo approach, such as simplicity, reliability, and speed

    Hierarchical Gaussian process mixtures for regression

    Get PDF
    As a result of their good performance in practice and their desirable analytical properties, Gaussian process regression models are becoming increasingly of interest in statistics, engineering and other fields. However, two major problems arise when the model is applied to a large data-set with repeated measurements. One stems from the systematic heterogeneity among the different replications, and the other is the requirement to invert a covariance matrix which is involved in the implementation of the model. The dimension of this matrix equals the sample size of the training data-set. In this paper, a Gaussian process mixture model for regression is proposed for dealing with the above two problems, and a hybrid Markov chain Monte Carlo (MCMC) algorithm is used for its implementation. Application to a real data-set is reported

    Pseudo-Marginal Bayesian Inference for Gaussian Processes

    Get PDF
    The main challenges that arise when adopting Gaussian Process priors in probabilistic modeling are how to carry out exact Bayesian inference and how to account for uncertainty on model parameters when making model-based predictions on out-of-sample data. Using probit regression as an illustrative working example, this paper presents a general and effective methodology based on the pseudo-marginal approach to Markov chain Monte Carlo that efficiently addresses both of these issues. The results presented in this paper show improvements over existing sampling methods to simulate from the posterior distribution over the parameters defining the covariance function of the Gaussian Process prior. This is particularly important as it offers a powerful tool to carry out full Bayesian inference of Gaussian Process based hierarchic statistical models in general. The results also demonstrate that Monte Carlo based integration of all model parameters is actually feasible in this class of models providing a superior quantification of uncertainty in predictions. Extensive comparisons with respect to state-of-the-art probabilistic classifiers confirm this assertion.Comment: 14 pages double colum
    • …
    corecore