110 research outputs found

    Modeling Dynamic Functional Connectivity with Latent Factor Gaussian Processes

    Get PDF
    Dynamic functional connectivity, as measured by the time-varying covariance of neurological signals, is believed to play an important role in many aspects of cognition. While many methods have been proposed, reliably establishing the presence and characteristics of brain connectivity is challenging due to the high dimensionality and noisiness of neuroimaging data. We present a latent factor Gaussian process model which addresses these challenges by learning a parsimonious representation of connectivity dynamics. The proposed model naturally allows for inference and visualization of time-varying connectivity. As an illustration of the scientific utility of the model, application to a data set of rat local field potential activity recorded during a complex non-spatial memory task provides evidence of stimuli differentiation

    Hidden Parameter Markov Decision Processes: A Semiparametric Regression Approach for Discovering Latent Task Parametrizations

    Full text link
    Control applications often feature tasks with similar, but not identical, dynamics. We introduce the Hidden Parameter Markov Decision Process (HiP-MDP), a framework that parametrizes a family of related dynamical systems with a low-dimensional set of latent factors, and introduce a semiparametric regression approach for learning its structure from data. In the control setting, we show that a learned HiP-MDP rapidly identifies the dynamics of a new task instance, allowing an agent to flexibly adapt to task variations
    • …
    corecore