2,817 research outputs found

    High-order, Dispersionless "Fast-Hybrid" Wave Equation Solver. Part I: O(1)\mathcal{O}(1) Sampling Cost via Incident-Field Windowing and Recentering

    Get PDF
    This paper proposes a frequency/time hybrid integral-equation method for the time dependent wave equation in two and three-dimensional spatial domains. Relying on Fourier Transformation in time, the method utilizes a fixed (time-independent) number of frequency-domain integral-equation solutions to evaluate, with superalgebraically-small errors, time domain solutions for arbitrarily long times. The approach relies on two main elements, namely, 1) A smooth time-windowing methodology that enables accurate band-limited representations for arbitrarily-long time signals, and 2) A novel Fourier transform approach which, in a time-parallel manner and without causing spurious periodicity effects, delivers numerically dispersionless spectrally-accurate solutions. A similar hybrid technique can be obtained on the basis of Laplace transforms instead of Fourier transforms, but we do not consider the Laplace-based method in the present contribution. The algorithm can handle dispersive media, it can tackle complex physical structures, it enables parallelization in time in a straightforward manner, and it allows for time leaping---that is, solution sampling at any given time TT at O(1)\mathcal{O}(1)-bounded sampling cost, for arbitrarily large values of TT, and without requirement of evaluation of the solution at intermediate times. The proposed frequency-time hybridization strategy, which generalizes to any linear partial differential equation in the time domain for which frequency-domain solutions can be obtained (including e.g. the time-domain Maxwell equations), and which is applicable in a wide range of scientific and engineering contexts, provides significant advantages over other available alternatives such as volumetric discretization, time-domain integral equations, and convolution-quadrature approaches.Comment: 33 pages, 8 figures, revised and extended manuscript (and now including direct comparisons to existing CQ and TDIE solver implementations) (Part I of II

    Fast cubature of high dimensional biharmonic potential based on Approximate Approximations

    Full text link
    We derive new formulas for the high dimensional biharmonic potential acting on Gaussians or Gaussians times special polynomials. These formulas can be used to construct accurate cubature formulas of an arbitrary high order which are fast and effective also in very high dimensions. Numerical tests show that the formulas are accurate and provide the predicted approximation rate (O(h^8)) up to the dimension 10^7

    Self-force via Green functions and worldline integration

    Get PDF
    A compact object moving in curved spacetime interacts with its own gravitational field. This leads to both dissipative and conservative corrections to the motion, which can be interpreted as a self-force acting on the object. The original formalism describing this self-force relied heavily on the Green function of the linear differential operator that governs gravitational perturbations. However, because the global calculation of Green functions in non-trivial black hole spacetimes has been an open problem until recently, alternative methods were established to calculate self-force effects using sophisticated regularization techniques that avoid the computation of the global Green function. We present a method for calculating the self-force that employs the global Green function and is therefore closely modeled after the original self-force expressions. Our quantitative method involves two stages: (i) numerical approximation of the retarded Green function in the background spacetime; (ii) evaluation of convolution integrals along the worldline of the object. This novel approach can be used along arbitrary worldlines, including those currently inaccessible to more established computational techniques. Furthermore, it yields geometrical insight into the contributions to self-interaction from curved geometry (back-scattering) and trapping of null geodesics. We demonstrate the method on the motion of a scalar charge in Schwarzschild spacetime. This toy model retains the physical history-dependence of the self-force but avoids gauge issues and allows us to focus on basic principles. We compute the self-field and self-force for many worldlines including accelerated circular orbits, eccentric orbits at the separatrix, and radial infall. This method, closely modeled after the original formalism, provides a promising complementary approach to the self-force problem.Comment: 18 pages, 9 figure

    Generating 3D faces using Convolutional Mesh Autoencoders

    Full text link
    Learned 3D representations of human faces are useful for computer vision problems such as 3D face tracking and reconstruction from images, as well as graphics applications such as character generation and animation. Traditional models learn a latent representation of a face using linear subspaces or higher-order tensor generalizations. Due to this linearity, they can not capture extreme deformations and non-linear expressions. To address this, we introduce a versatile model that learns a non-linear representation of a face using spectral convolutions on a mesh surface. We introduce mesh sampling operations that enable a hierarchical mesh representation that captures non-linear variations in shape and expression at multiple scales within the model. In a variational setting, our model samples diverse realistic 3D faces from a multivariate Gaussian distribution. Our training data consists of 20,466 meshes of extreme expressions captured over 12 different subjects. Despite limited training data, our trained model outperforms state-of-the-art face models with 50% lower reconstruction error, while using 75% fewer parameters. We also show that, replacing the expression space of an existing state-of-the-art face model with our autoencoder, achieves a lower reconstruction error. Our data, model and code are available at http://github.com/anuragranj/com

    Deformable kernels for early vision

    Get PDF
    Early vision algorithms often have a first stage of linear-filtering that `extracts' from the image information at multiple scales of resolution and multiple orientations. A common difficulty in the design and implementation of such schemes is that one feels compelled to discretize coarsely the space of scales and orientations in order to reduce computation and storage costs. A technique is presented that allows: 1) computing the best approximation of a given family using linear combinations of a small number of `basis' functions; and 2) describing all finite-dimensional families, i.e., the families of filters for which a finite dimensional representation is possible with no error. The technique is based on singular value decomposition and may be applied to generating filters in arbitrary dimensions and subject to arbitrary deformations. The relevant functional analysis results are reviewed and precise conditions for the decomposition to be feasible are stated. Experimental results are presented that demonstrate the applicability of the technique to generating multiorientation multi-scale 2D edge-detection kernels. The implementation issues are also discussed

    Deformable kernels for early vision

    Get PDF
    Early vision algorithms often have a first stage of linear filtering that 'extracts' from the image information at multiple scales of resolution and multiple orientations. A common difficulty in the design and implementation of such schemes is that one feels compelled to discretize coarsely the space of scales and orientations in order to reduce computation and storage costs. This discretization produces anisotropies due to a loss of traslation-, rotation- scaling- invariance that makes early vision algorithms less precise and more difficult to design. This need not be so: one can compute and store efficiently the response of families of linear filters defined on a continuum of orientations and scales. A technique is presented that allows (1) to compute the best approximation of a given family using linear combinations of a small number of 'basis' functions; (2) to describe all finite-dimensional families, i.e. the families of filters for which a finite dimensional representation is possible with no error. The technique is general and can be applied to generating filters in arbitrary dimensions. Experimental results are presented that demonstrate the applicability of the technique to generating multi-orientation multi-scale 20 edge-detection kernels. The implementation issues are also discussed
    corecore