3,486 research outputs found

    Gaussian Belief Propagation Solver for Systems of Linear Equations

    Full text link
    The canonical problem of solving a system of linear equations arises in numerous contexts in information theory, communication theory, and related fields. In this contribution, we develop a solution based upon Gaussian belief propagation (GaBP) that does not involve direct matrix inversion. The iterative nature of our approach allows for a distributed message-passing implementation of the solution algorithm. We also address some properties of the GaBP solver, including convergence, exactness, its max-product version and relation to classical solution methods. The application example of decorrelation in CDMA is used to demonstrate the faster convergence rate of the proposed solver in comparison to conventional linear-algebraic iterative solution methods.Comment: 5 pages, 2 figures, appeared in the 2008 IEEE International Symposium on Information Theory, Toronto, July 200

    Distributed Large Scale Network Utility Maximization

    Full text link
    Recent work by Zymnis et al. proposes an efficient primal-dual interior-point method, using a truncated Newton method, for solving the network utility maximization (NUM) problem. This method has shown superior performance relative to the traditional dual-decomposition approach. Other recent work by Bickson et al. shows how to compute efficiently and distributively the Newton step, which is the main computational bottleneck of the Newton method, utilizing the Gaussian belief propagation algorithm. In the current work, we combine both approaches to create an efficient distributed algorithm for solving the NUM problem. Unlike the work of Zymnis, which uses a centralized approach, our new algorithm is easily distributed. Using an empirical evaluation we show that our new method outperforms previous approaches, including the truncated Newton method and dual-decomposition methods. As an additional contribution, this is the first work that evaluates the performance of the Gaussian belief propagation algorithm vs. the preconditioned conjugate gradient method, for a large scale problem.Comment: In the International Symposium on Information Theory (ISIT) 200

    Polynomial Linear Programming with Gaussian Belief Propagation

    Full text link
    Interior-point methods are state-of-the-art algorithms for solving linear programming (LP) problems with polynomial complexity. Specifically, the Karmarkar algorithm typically solves LP problems in time O(n^{3.5}), where nn is the number of unknown variables. Karmarkar's celebrated algorithm is known to be an instance of the log-barrier method using the Newton iteration. The main computational overhead of this method is in inverting the Hessian matrix of the Newton iteration. In this contribution, we propose the application of the Gaussian belief propagation (GaBP) algorithm as part of an efficient and distributed LP solver that exploits the sparse and symmetric structure of the Hessian matrix and avoids the need for direct matrix inversion. This approach shifts the computation from realm of linear algebra to that of probabilistic inference on graphical models, thus applying GaBP as an efficient inference engine. Our construction is general and can be used for any interior-point algorithm which uses the Newton method, including non-linear program solvers.Comment: 7 pages, 1 figure, appeared in the 46th Annual Allerton Conference on Communication, Control and Computing, Allerton House, Illinois, Sept. 200

    Gaussian Belief Propagation Based Multiuser Detection

    Full text link
    In this work, we present a novel construction for solving the linear multiuser detection problem using the Gaussian Belief Propagation algorithm. Our algorithm yields an efficient, iterative and distributed implementation of the MMSE detector. We compare our algorithm's performance to a recent result and show an improved memory consumption, reduced computation steps and a reduction in the number of sent messages. We prove that recent work by Montanari et al. is an instance of our general algorithm, providing new convergence results for both algorithms.Comment: 6 pages, 1 figures, appeared in the 2008 IEEE International Symposium on Information Theory, Toronto, July 200

    Distributed Convergence Verification for Gaussian Belief Propagation

    Full text link
    Gaussian belief propagation (BP) is a computationally efficient method to approximate the marginal distribution and has been widely used for inference with high dimensional data as well as distributed estimation in large-scale networks. However, the convergence of Gaussian BP is still an open issue. Though sufficient convergence conditions have been studied in the literature, verifying these conditions requires gathering all the information over the whole network, which defeats the main advantage of distributed computing by using Gaussian BP. In this paper, we propose a novel sufficient convergence condition for Gaussian BP that applies to both the pairwise linear Gaussian model and to Gaussian Markov random fields. We show analytically that this sufficient convergence condition can be easily verified in a distributed way that satisfies the network topology constraint.Comment: accepted by Asilomar Conference on Signals, Systems, and Computers, 2017, Asilomar, Pacific Grove, CA. arXiv admin note: text overlap with arXiv:1706.0407

    Convergence analysis of the information matrix in Gaussian belief propagation

    Get PDF
    Gaussian belief propagation (BP) has been widely used for distributed estimation in large-scale networks such as the smart grid, communication networks, and social networks, where local measurements/observations are scattered over a wide geographical area. However, the convergence of Gaus- sian BP is still an open issue. In this paper, we consider the convergence of Gaussian BP, focusing in particular on the convergence of the information matrix. We show analytically that the exchanged message information matrix converges for arbitrary positive semidefinite initial value, and its dis- tance to the unique positive definite limit matrix decreases exponentially fast.Comment: arXiv admin note: substantial text overlap with arXiv:1611.0201
    • …
    corecore