164 research outputs found

    Optimal Rendezvous L-Algorithms for Asynchronous Mobile Robots with External-Lights

    Get PDF
    We study the Rendezvous problem for two autonomous mobile robots in asynchronous settings with persistent memory called light. It is well known that Rendezvous is impossible in a basic model when robots have no lights, even if the system is semi-synchronous. On the other hand, Rendezvous is possible if robots have lights of various types with a constant number of colors. If robots can observe not only their own lights but also other robots\u27 lights, their lights are called full-light. If robots can only observe the state of other robots\u27 lights, the lights are called external-light. This paper focuses on robots with external-lights in asynchronous settings and a particular class of algorithms called L-algorithms, where an L-algorithm computes a destination based only on the current colors of observable lights. When considering L-algorithms, Rendezvous can be solved by robots with full-lights and three colors in general asynchronous settings (called ASYNC) and the number of colors is optimal under these assumptions. In contrast, there exist no L-algorithms in ASYNC with external-lights regardless of the number of colors. In this paper, extending the impossibility result, we show that there exist no L-algorithms in so-called LC-1-Bounded ASYNC with external-lights regardless of the number of colors, where LC-1-Bounded ASYNC is a proper subset of ASYNC and other robots can execute at most one Look operation between the Look operation of a robot and its subsequent Compute operation. We also show that LC-1-Bounded ASYNC is the minimal subclass in which no L-algorithms with external-lights exist. That is, Rendezvous can be solved by L-algorithms using external-lights with a finite number of colors in LC-0-Bounded ASYNC (equivalently LC-atomic ASYNC). Furthermore, we show that the algorithms are optimal in the number of colors they use

    Gathering of Mobile Robots with Defected Views

    Get PDF
    An autonomous mobile robot system consisting of many mobile computational entities (called robots) attracts much attention of researchers, and it is an emerging issue for a recent couple of decades to clarify the relation between the capabilities of robots and solvability of the problems. Generally, each robot can observe all other robots as long as there are no restrictions on visibility range or obstructions, regardless of the number of robots. In this paper, we provide a new perspective on the observation by robots; a robot cannot necessarily observe all other robots regardless of distances to them. We call this new computational model the defected view model. Under this model, in this paper, we consider the gathering problem that requires all the robots to gather at the same non-predetermined point and propose two algorithms to solve the gathering problem in the adversarial (N,N-2)-defected model for N ? 5 (where each robot observes at most N-2 robots chosen adversarially) and the distance-based (4,2)-defected model (where each robot observes at most two robots closest to itself), respectively, where N is the number of robots. Moreover, we present an impossibility result showing that there is no (deterministic) gathering algorithm in the adversarial or distance-based (3,1)-defected model, and we also show an impossibility result for the gathering in a relaxed (N, N-2)-defected model

    Plane Formation by Synchronous Mobile Robots in the Three Dimensional Euclidean Space

    Full text link
    Creating a swarm of mobile computing entities frequently called robots, agents or sensor nodes, with self-organization ability is a contemporary challenge in distributed computing. Motivated by this, we investigate the plane formation problem that requires a swarm of robots moving in the three dimensional Euclidean space to land on a common plane. The robots are fully synchronous and endowed with visual perception. But they do not have identifiers, nor access to the global coordinate system, nor any means of explicit communication with each other. Though there are plenty of results on the agreement problem for robots in the two dimensional plane, for example, the point formation problem, the pattern formation problem, and so on, this is the first result for robots in the three dimensional space. This paper presents a necessary and sufficient condition for fully-synchronous robots to solve the plane formation problem that does not depend on obliviousness i.e., the availability of local memory at robots. An implication of the result is somewhat counter-intuitive: The robots cannot form a plane from most of the semi-regular polyhedra, while they can form a plane from every regular polyhedron (except a regular icosahedron), whose symmetry is usually considered to be higher than any semi-regular polyhedrdon

    Asynchronous Gathering of Robots with Finite Memory on a Circle under Limited Visibility

    Full text link
    Consider a set of nn mobile entities, called robots, located and operating on a continuous circle, i.e., all robots are initially in distinct locations on a circle. The \textit{gathering} problem asks to design a distributed algorithm that allows the robots to assemble at a point on the circle. Robots are anonymous, identical, and homogeneous. Robots operate in a deterministic Look-Compute-Move cycle within the circular path. Robots agree on the clockwise direction. The robot's movement is rigid and they have limited visibility π\pi, i.e., each robot can only see the points of the circle which is at an angular distance strictly less than π\pi from the robot. Di Luna \textit{et al}. [DISC'2020] provided a deterministic gathering algorithm of oblivious and silent robots on a circle in semi-synchronous (\textsc{SSync}) scheduler. Buchin \textit{et al}. [IPDPS(W)'2021] showed that, under full visibility, OBLOT\mathcal{OBLOT} robot model with \textsc{SSync} scheduler is incomparable to FSTA\mathcal{FSTA} robot (robots are silent but have finite persistent memory) model with asynchronous (\textsc{ASync}) scheduler. Under limited visibility, this comparison is still unanswered. So, this work extends the work of Di Luna \textit{et al}. [DISC'2020] under \textsc{ASync} scheduler for FSTA\mathcal{FSTA} robot model

    Rendezvous on a Known Dynamic Point on a Finite Unoriented Grid

    Full text link
    In this paper, we have considered two fully synchronous OBLOT\mathcal{OBLOT} robots having no agreement on coordinates entering a finite unoriented grid through a door vertex at a corner, one by one. There is a resource that can move around the grid synchronously with the robots until it gets co-located along with at least one robot. Assuming the robots can see and identify the resource, we consider the problem where the robots must meet at the location of this dynamic resource within finite rounds. We name this problem "Rendezvous on a Known Dynamic Point". Here, we have provided an algorithm for the two robots to gather at the location of the dynamic resource. We have also provided a lower bound on time for this problem and showed that with certain assumption on the waiting time of the resource on a single vertex, the algorithm provided is time optimal. We have also shown that it is impossible to solve this problem if the scheduler considered is semi-synchronous
    • …
    corecore