420 research outputs found

    Gated Convolutional Bidirectional Attention-based Model for Off-topic Spoken Response Detection

    Full text link
    Off-topic spoken response detection, the task aiming at predicting whether a response is off-topic for the corresponding prompt, is important for an automated speaking assessment system. In many real-world educational applications, off-topic spoken response detectors are required to achieve high recall for off-topic responses not only on seen prompts but also on prompts that are unseen during training. In this paper, we propose a novel approach for off-topic spoken response detection with high off-topic recall on both seen and unseen prompts. We introduce a new model, Gated Convolutional Bidirectional Attention-based Model (GCBiA), which applies bi-attention mechanism and convolutions to extract topic words of prompts and key-phrases of responses, and introduces gated unit and residual connections between major layers to better represent the relevance of responses and prompts. Moreover, a new negative sampling method is proposed to augment training data. Experiment results demonstrate that our novel approach can achieve significant improvements in detecting off-topic responses with extremely high on-topic recall, for both seen and unseen prompts.Comment: ACL2020 long pape

    PersoNER: Persian named-entity recognition

    Full text link
    © 1963-2018 ACL. Named-Entity Recognition (NER) is still a challenging task for languages with low digital resources. The main difficulties arise from the scarcity of annotated corpora and the consequent problematic training of an effective NER pipeline. To abridge this gap, in this paper we target the Persian language that is spoken by a population of over a hundred million people world-wide. We first present and provide ArmanPerosNERCorpus, the first manually-annotated Persian NER corpus. Then, we introduce PersoNER, an NER pipeline for Persian that leverages a word embedding and a sequential max-margin classifier. The experimental results show that the proposed approach is capable of achieving interesting MUC7 and CoNNL scores while outperforming two alternatives based on a CRF and a recurrent neural network

    Viseme-based Lip-Reading using Deep Learning

    Get PDF
    Research in Automated Lip Reading is an incredibly rich discipline with so many facets that have been the subject of investigation including audio-visual data, feature extraction, classification networks and classification schemas. The most advanced and up-to-date lip-reading systems can predict entire sentences with thousands of different words and the majority of them use ASCII characters as the classification schema. The classification performance of such systems however has been insufficient and the need to cover an ever expanding range of vocabulary using as few classes as possible is challenge. The work in this thesis contributes to the area concerning classification schemas by proposing an automated lip reading model that predicts sentences using visemes as a classification schema. This is an alternative schema to using ASCII characters, which is the conventional class system used to predict sentences. This thesis provides a review of the current trends in deep learning- based automated lip reading and analyses a gap in the research endeavours of automated lip-reading by contributing towards work done in the region of classification schema. A whole new line of research is opened up whereby an alternative way to do lip-reading is explored and in doing so, lip-reading performance results for predicting s entences from a benchmark dataset are attained which improve upon the current state-of-the-art. In this thesis, a neural network-based lip reading system is proposed. The system is lexicon-free and uses purely visual cues. With only a limited number of visemes as classes to recognise, the system is designed to lip read sentences covering a wide range of vocabulary and to recognise words that may not be included in system training. The lip-reading system predicts sentences as a two-stage procedure with visemes being recognised as the first stage and words being classified as the second stage. This is such that the second-stage has to both overcome the one-to-many mapping problem posed in lip-reading where one set of visemes can map to several words, and the problem of visemes being confused or misclassified to begin with. To develop the proposed lip-reading system, a number of tasks have been performed in this thesis. These include the classification of continuous sequences of visemes; and the proposal of viseme-to-word conversion models that are both effective in their conversion performance of predicting words, and robust to the possibility of viseme confusion or misclassification. The initial system reported has been testified on the challenging BBC Lip Reading Sentences 2 (LRS2) benchmark dataset attaining a word accuracy rate of 64.6%. Compared with the state-of-the-art works in lip reading sentences reported at the time, the system had achieved a significantly improved performance. The lip reading system is further improved upon by using a language model that has been demonstrated to be effective at discriminating between homopheme words and being robust to incorrectly classified visemes. An improved performance in predicting spoken sentences from the LRS2 dataset is yielded with an attained word accuracy rate of 79.6% which is still better than another lip-reading system trained and evaluated on the the same dataset that attained a word accuracy rate 77.4% and it is to the best of our knowledge the next best observed result attained on LRS2

    Natural Language Processing: Emerging Neural Approaches and Applications

    Get PDF
    This Special Issue highlights the most recent research being carried out in the NLP field to discuss relative open issues, with a particular focus on both emerging approaches for language learning, understanding, production, and grounding interactively or autonomously from data in cognitive and neural systems, as well as on their potential or real applications in different domains

    Deep learning with knowledge graphs for fine-grained emotion classification in text

    Get PDF
    This PhD thesis investigates two key challenges in the area of fine-grained emotion detection in textual data. More specifically, this work focuses on (i) the accurate classification of emotion in tweets and (ii) improving the learning of representations from knowledge graphs using graph convolutional neural networks.The first part of this work outlines the task of emotion keyword detection in tweets and introduces a new resource called the EEK dataset. Tweets have previously been categorised as short sequences or sentence-level sentiment analysis, and it could be argued that this should no longer be the case, especially since Twitter increased its allowed character limit. Recurrent Neural Networks have become a well-established method to classify tweets over recent years, but have struggled with accurately classifying longer sequences due to the vanishing and exploding gradient descent problem. A common technique to overcome this problem has been to prune tweets to a shorter sequence length. However, this also meant that often potentially important emotion carrying information, which is often found towards the end of a tweet, was lost (e.g., emojis and hashtags). As such, tweets mostly face also problems with classifying long sequences, similar to other natural language processing tasks. To overcome these challenges, a multi-scale hierarchical recurrent neural network is proposed and benchmarked against other existing methods. The proposed learning model outperforms existing methods on the same task by up to 10.52%. Another key component for the accurate classification of tweets has been the use of language models, where more recent techniques such as BERT and ELMO have achieved great success in a range of different tasks. However, in Sentiment Analysis, a key challenge has always been to use language models that do not only take advantage of the context a word is used in but also the sentiment it carries. Therefore the second part of this work looks at improving representation learning for emotion classification by introducing both linguistic and emotion knowledge to language models. A new linguistically inspired knowledge graph called RELATE is introduced. Then a new language model is trained on a Graph Convolutional Neural Network and compared against several other existing language models, where it is found that the proposed embedding representations achieve competitive results to other LMs, whilst requiring less pre-training time and data. Finally, it is investigated how the proposed methods can be applied to document-level classification tasks. More specifically, this work focuses on the accurate classification of suicide notes and analyses whether sentiment and linguistic features are important for accurate classification

    Exploiting Emotions via Composite Pretrained Embedding and Ensemble Language Model

    Get PDF
    Decisions in the modern era are based on more than just the available data; they also incorporate feedback from online sources. Processing reviews known as Sentiment analysis (SA) or Emotion analysis. Understanding the user's perspective and routines is crucial now-a-days for multiple reasons. It is used by both businesses and governments to make strategic decisions. Various architectural and vector embedding strategies have been developed for SA processing. Accurate representation of text is crucial for automatic SA. Due to the large number of languages spoken and written,  polysemy and syntactic or semantic issues were common. To get around these problems, we developed effective composite embedding (ECE), a method that combines the advantages of vector embedding techniques that are either context-independent (like glove & fasttext) or context-aware (like  XLNet) to effectively represent the features needed for processing.  To improve the performace towards emotion or  sentiment we proposed stacked ensemble model of deep lanugae models.ECE with Ensembled model is evaluated on balanced  dataset to prove that it is a reliable embedding technique and a generalised model for SA.In order to evaluate ECE, cutting-edge ML and Deep net language models are deployed and comapared. The model is evaluated using benchmark datset such as  MR, Kindle along with realtime tweet dataset of user complaints . LIME is used to verify the model's predictions and to provide statistical results for sentence.The model with ECE embedding provides state-of-art results with real time dataset as well
    • …
    corecore