1,079 research outputs found

    Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology: a retrospective multicentric study

    Get PDF
    Aim Gastric cancer (GC) is a tumor entity with highly variant outcomes. Lymph node metastasis is a prognostically adverse biomarker. We hypothesized that GC primary tissue contains information that is predictive of lymph node status and patient prognosis and that this information can be extracted using Deep Learning (DL). Methods Using three patient cohorts comprising 1146 patients, we trained and validated a DL system to predict lymph node status directly from hematoxylin-and-eosin stained GC tissue sections. We investigated the concordance between the DL-based prediction from the primary tumor slides (aiN score) and the histopathological lymph node status (pN). Furthermore, we assessed the prognostic value of the aiN score alone and when combined with the pN status. Results The aiN score predicted the pN status reaching Area Under the Receiver Operating Characteristic curves (AUROCs) of 0.71 in the training cohort and 0.69 and 0.65 in the two test cohorts. In a multivariate Cox analysis, the aiN score was an independent predictor of patient survival with Hazard Ratios (HR) of 1.5 in the training cohort and of 1.3 and 2.2 in the two test cohorts. A combination of the aiN score and the pN status prognostically stratified patients by survival with p-values <0.05 in log-rank tests. Conclusion GC primary tumor tissue contains additional prognostic information that is accessible using the aiN score. In combination with the pN status, this can be used for personalized management of gastric cancer patients after prospective validation

    Texture-based Deep Neural Network for Histopathology Cancer Whole Slide Image (WSI) Classification

    Get PDF
    Automatic histopathological Whole Slide Image (WSI) analysis for cancer classification has been highlighted along with the advancements in microscopic imaging techniques. However, manual examination and diagnosis with WSIs is time-consuming and tiresome. Recently, deep convolutional neural networks have succeeded in histopathological image analysis. In this paper, we propose a novel cancer texture-based deep neural network (CAT-Net) that learns scalable texture features from histopathological WSIs. The innovation of CAT-Net is twofold: (1) capturing invariant spatial patterns by dilated convolutional layers and (2) Reducing model complexity while improving performance. Moreover, CAT-Net can provide discriminative texture patterns formed on cancerous regions of histopathological images compared to normal regions. The proposed method outperformed the current state-of-the-art benchmark methods on accuracy, precision, recall, and F1 score

    Artificial intelligence in digital pathology: a diagnostic test accuracy systematic review and meta-analysis

    Full text link
    Ensuring diagnostic performance of AI models before clinical use is key to the safe and successful adoption of these technologies. Studies reporting AI applied to digital pathology images for diagnostic purposes have rapidly increased in number in recent years. The aim of this work is to provide an overview of the diagnostic accuracy of AI in digital pathology images from all areas of pathology. This systematic review and meta-analysis included diagnostic accuracy studies using any type of artificial intelligence applied to whole slide images (WSIs) in any disease type. The reference standard was diagnosis through histopathological assessment and / or immunohistochemistry. Searches were conducted in PubMed, EMBASE and CENTRAL in June 2022. We identified 2976 studies, of which 100 were included in the review and 48 in the full meta-analysis. Risk of bias and concerns of applicability were assessed using the QUADAS-2 tool. Data extraction was conducted by two investigators and meta-analysis was performed using a bivariate random effects model. 100 studies were identified for inclusion, equating to over 152,000 whole slide images (WSIs) and representing many disease types. Of these, 48 studies were included in the meta-analysis. These studies reported a mean sensitivity of 96.3% (CI 94.1-97.7) and mean specificity of 93.3% (CI 90.5-95.4) for AI. There was substantial heterogeneity in study design and all 100 studies identified for inclusion had at least one area at high or unclear risk of bias. This review provides a broad overview of AI performance across applications in whole slide imaging. However, there is huge variability in study design and available performance data, with details around the conduct of the study and make up of the datasets frequently missing. Overall, AI offers good accuracy when applied to WSIs but requires more rigorous evaluation of its performance.Comment: 26 pages, 5 figures, 8 tables + Supplementary material

    Computational Pathology: A Survey Review and The Way Forward

    Full text link
    Computational Pathology CPath is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images. The main objective for CPath is to develop infrastructure and workflows of digital diagnostics as an assistive CAD system for clinical pathology, facilitating transformational changes in the diagnosis and treatment of cancer that are mainly address by CPath tools. With evergrowing developments in deep learning and computer vision algorithms, and the ease of the data flow from digital pathology, currently CPath is witnessing a paradigm shift. Despite the sheer volume of engineering and scientific works being introduced for cancer image analysis, there is still a considerable gap of adopting and integrating these algorithms in clinical practice. This raises a significant question regarding the direction and trends that are undertaken in CPath. In this article we provide a comprehensive review of more than 800 papers to address the challenges faced in problem design all-the-way to the application and implementation viewpoints. We have catalogued each paper into a model-card by examining the key works and challenges faced to layout the current landscape in CPath. We hope this helps the community to locate relevant works and facilitate understanding of the field's future directions. In a nutshell, we oversee the CPath developments in cycle of stages which are required to be cohesively linked together to address the challenges associated with such multidisciplinary science. We overview this cycle from different perspectives of data-centric, model-centric, and application-centric problems. We finally sketch remaining challenges and provide directions for future technical developments and clinical integration of CPath (https://github.com/AtlasAnalyticsLab/CPath_Survey).Comment: Accepted in Elsevier Journal of Pathology Informatics (JPI) 202

    Computational methods for metastasis detection in lymph nodes and characterization of the metastasis-free lymph node microarchitecture: A systematic-narrative hybrid review

    Get PDF
    Background Histological examination of tumor draining lymph nodes (LNs) plays a vital role in cancer staging and prognostication. However, as soon as a LN is classed as metastasis-free, no further investigation will be performed and thus, potentially clinically relevant information detectable in tumor-free LNs is currently not captured. Objective To systematically study and critically assess methods for the analysis of digitized histological LN images described in published research. Methods A systematic search was conducted in several public databases up to December 2023 using relevant search terms. Studies using brightfield light microscopy images of hematoxylin and eosin or immunohistochemically stained LN tissue sections aiming to detect and/or segment LNs, their compartments or metastatic tumor using artificial intelligence (AI) were included. Dataset, AI methodology, cancer type, and study objective were compared between articles. Results A total of 7201 articles were collected and 73 articles remained for detailed analyses after article screening. Of the remaining articles, 86% aimed at LN metastasis identification, 8% aimed at LN compartment segmentation, and remaining focused on LN contouring. Furthermore, 78% of articles used patch classification and 22% used pixel segmentation models for analyses. Five out of six studies (83%) of metastasis-free LNs were performed on publicly unavailable datasets, making quantitative article comparison impossible. Conclusions Multi-scale models mimicking multiple microscopy zooms show promise for computational LN analysis. Large-scale datasets are needed to establish the clinical relevance of analyzing metastasis-free LN in detail. Further research is needed to identify clinically interpretable metrics for LN compartment characterization

    Towards Prediction of Pancreatic Cancer Using SVM Study Model

    Get PDF
    published_or_final_versio

    Now and Future of Artificial Intelligence-based Signet Ring Cell Diagnosis: A Survey

    Full text link
    Since signet ring cells (SRCs) are associated with high peripheral metastasis rate and dismal survival, they play an important role in determining surgical approaches and prognosis, while they are easily missed by even experienced pathologists. Although automatic diagnosis SRCs based on deep learning has received increasing attention to assist pathologists in improving the diagnostic efficiency and accuracy, the existing works have not been systematically overviewed, which hindered the evaluation of the gap between algorithms and clinical applications. In this paper, we provide a survey on SRC analysis driven by deep learning from 2008 to August 2023. Specifically, the biological characteristics of SRCs and the challenges of automatic identification are systemically summarized. Then, the representative algorithms are analyzed and compared via dividing them into classification, detection, and segmentation. Finally, for comprehensive consideration to the performance of existing methods and the requirements for clinical assistance, we discuss the open issues and future trends of SRC analysis. The retrospect research will help researchers in the related fields, particularly for who without medical science background not only to clearly find the outline of SRC analysis, but also gain the prospect of intelligent diagnosis, resulting in accelerating the practice and application of intelligent algorithms

    Artificial intelligence in digital pathology: a diagnostic test accuracy systematic review and meta-analysis

    Get PDF
    Ensuring diagnostic performance of AI models before clinical use is key to the safe and successful adoption of these technologies. Studies reporting AI applied to digital pathology images for diagnostic purposes have rapidly increased in number in recent years. The aim of this work is to provide an overview of the diagnostic accuracy of AI in digital pathology images from all areas of pathology. This systematic review and meta-analysis included diagnostic accuracy studies using any type of artificial intelligence applied to whole slide images (WSIs) in any disease type. The reference standard was diagnosis through histopathological assessment and / or immunohistochemistry. Searches were conducted in PubMed, EMBASE and CENTRAL in June 2022. We identified 2976 studies, of which 100 were included in the review and 48 in the full meta-analysis. Risk of bias and concerns of applicability were assessed using the QUADAS-2 tool. Data extraction was conducted by two investigators and meta-analysis was performed using a bivariate random effects model. 100 studies were identified for inclusion, equating to over 152,000 whole slide images (WSIs) and representing many disease types. Of these, 48 studies were included in the meta-analysis. These studies reported a mean sensitivity of 96.3% (CI 94.1-97.7) and mean specificity of 93.3% (CI 90.5-95.4) for AI. There was substantial heterogeneity in study design and all 100 studies identified for inclusion had at least one area at high or unclear risk of bias. This review provides a broad overview of AI performance across applications in whole slide imaging. However, there is huge variability in study design and available performance data, with details around the conduct of the study and make up of the datasets frequently missing. Overall, AI offers good accuracy when applied to WSIs but requires more rigorous evaluation of its performance
    corecore