18 research outputs found

    New Parameters for Beyond-Planar Graphs

    Get PDF
    Parameters for graphs appear frequently throughout the history of research in this field. They represent very important measures for the properties of graphs and graph drawings, and are often a main criterion for their classification and their aesthetic perception. In this direction, we provide new results for the following graph parameters: – The segment complexity of trees; – the membership of graphs of bounded vertex degree to certain graph classes; – the maximal complete and complete bipartite graphs contained in certain graph classes beyond-planarity; – the crossing number of graphs; – edge densities for outer-gap-planar graphs and for bipartite gap-planar graphs with certain properties; – edge densities and inclusion relationships for 2-layer graphs, as well as characterizations for complete bipartite graphs in the 2-layer setting

    Crossing Numbers of Beyond-Planar Graphs

    Get PDF

    Shallow Minors, Graph Products and Beyond Planar Graphs

    Full text link
    The planar graph product structure theorem of Dujmovi\'{c}, Joret, Micek, Morin, Ueckerdt, and Wood [J. ACM 2020] states that every planar graph is a subgraph of the strong product of a graph with bounded treewidth and a path. This result has been the key tool to resolve important open problems regarding queue layouts, nonrepetitive colourings, centered colourings, and adjacency labelling schemes. In this paper, we extend this line of research by utilizing shallow minors to prove analogous product structure theorems for several beyond planar graph classes. The key observation that drives our work is that many beyond planar graphs can be described as a shallow minor of the strong product of a planar graph with a small complete graph. In particular, we show that powers of planar graphs, kk-planar, (k,p)(k,p)-cluster planar, fan-planar and kk-fan-bundle planar graphs have such a shallow-minor structure. Using a combination of old and new results, we deduce that these classes have bounded queue-number, bounded nonrepetitive chromatic number, polynomial pp-centred chromatic numbers, linear strong colouring numbers, and cubic weak colouring numbers. In addition, we show that kk-gap planar graphs have at least exponential local treewidth and, as a consequence, cannot be described as a subgraph of the strong product of a graph with bounded treewidth and a path

    Min-kk-planar Drawings of Graphs

    Full text link
    The study of nonplanar drawings of graphs with restricted crossing configurations is a well-established topic in graph drawing, often referred to as beyond-planar graph drawing. One of the most studied types of drawings in this area are the kk-planar drawings (k1)(k \geq 1), where each edge cannot cross more than kk times. We generalize kk-planar drawings, by introducing the new family of min-kk-planar drawings. In a min-kk-planar drawing edges can cross an arbitrary number of times, but for any two crossing edges, one of the two must have no more than kk crossings. We prove a general upper bound on the number of edges of min-kk-planar drawings, a finer upper bound for k=3k=3, and tight upper bounds for k=1,2k=1,2. Also, we study the inclusion relations between min-kk-planar graphs (i.e., graphs admitting min-kk-planar drawings) and kk-planar graphs.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    On RAC Drawings of Graphs with Two Bends per Edge

    Full text link
    It is shown that every nn-vertex graph that admits a 2-bend RAC drawing in the plane, where the edges are polylines with two bends per edge and any pair of edges can only cross at a right angle, has at most 20n2420n-24 edges for n3n\geq 3. This improves upon the previous upper bound of 74.2n74.2n; this is the first improvement in more than 12 years. A crucial ingredient of the proof is an upper bound on the size of plane multigraphs with polyline edges in which the first and last segments are either parallel or orthogonal.Comment: Presented at the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    Product structure of graph classes with strongly sublinear separators

    Full text link
    We investigate the product structure of hereditary graph classes admitting strongly sublinear separators. We characterise such classes as subgraphs of the strong product of a star and a complete graph of strongly sublinear size. In a more precise result, we show that if any hereditary graph class G\mathcal{G} admits O(n1ϵ)O(n^{1-\epsilon}) separators, then for any fixed δ(0,ϵ)\delta\in(0,\epsilon) every nn-vertex graph in G\mathcal{G} is a subgraph of the strong product of a graph HH with bounded tree-depth and a complete graph of size O(n1ϵ+δ)O(n^{1-\epsilon+\delta}). This result holds with δ=0\delta=0 if we allow HH to have tree-depth O(loglogn)O(\log\log n). Moreover, using extensions of classical isoperimetric inequalties for grids graphs, we show the dependence on δ\delta in our results and the above td(H)O(loglogn)\text{td}(H)\in O(\log\log n) bound are both best possible. We prove that nn-vertex graphs of bounded treewidth are subgraphs of the product of a graph with tree-depth tt and a complete graph of size O(n1/t)O(n^{1/t}), which is best possible. Finally, we investigate the conjecture that for any hereditary graph class G\mathcal{G} that admits O(n1ϵ)O(n^{1-\epsilon}) separators, every nn-vertex graph in G\mathcal{G} is a subgraph of the strong product of a graph HH with bounded tree-width and a complete graph of size O(n1ϵ)O(n^{1-\epsilon}). We prove this for various classes G\mathcal{G} of interest.Comment: v2: added bad news subsection; v3: removed section "Polynomial Expansion Classes" which had an error, added section "Lower Bounds", and added a new author; v4: minor revisions and corrections
    corecore