3 research outputs found

    Leveraging Node Attributes for Incomplete Relational Data

    Full text link
    Relational data are usually highly incomplete in practice, which inspires us to leverage side information to improve the performance of community detection and link prediction. This paper presents a Bayesian probabilistic approach that incorporates various kinds of node attributes encoded in binary form in relational models with Poisson likelihood. Our method works flexibly with both directed and undirected relational networks. The inference can be done by efficient Gibbs sampling which leverages sparsity of both networks and node attributes. Extensive experiments show that our models achieve the state-of-the-art link prediction results, especially with highly incomplete relational data.Comment: Appearing in ICML 201

    JNET: Learning User Representations via Joint Network Embedding and Topic Embedding

    Full text link
    User representation learning is vital to capture diverse user preferences, while it is also challenging as user intents are latent and scattered among complex and different modalities of user-generated data, thus, not directly measurable. Inspired by the concept of user schema in social psychology, we take a new perspective to perform user representation learning by constructing a shared latent space to capture the dependency among different modalities of user-generated data. Both users and topics are embedded to the same space to encode users' social connections and text content, to facilitate joint modeling of different modalities, via a probabilistic generative framework. We evaluated the proposed solution on large collections of Yelp reviews and StackOverflow discussion posts, with their associated network structures. The proposed model outperformed several state-of-the-art topic modeling based user models with better predictive power in unseen documents, and state-of-the-art network embedding based user models with improved link prediction quality in unseen nodes. The learnt user representations are also proved to be useful in content recommendation, e.g., expert finding in StackOverflow
    corecore