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This thesis will focus on relational learning in the modeling of text and

user roles in networks, and the relative treatment of individuals as related

to algorithmic fairness. With the exponential growth in social network data,

the need for models of user interaction data is growing. This work presents a

model which agglomerates users into archetypes based on topical modeling of

the contents of their interactions. It further proposes models and a fairness

metric for the creation of classifiers for individuals which control for the relative

treatment of individuals.
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Chapter 1

Introduction

1.1 Overview

This thesis will focus on relational learning in two areas: the modeling

of text and user roles in networks, and the relative treatment of individuals as

related to algorithmic fairness.

The exponential growth of computers’ influence in our lives has been

driven not by individual computers but by their networks, and more so by the

possibilities of the combinatorial interactions of the users of those networks.

Users increasingly base their lives on computer networks, from mundane eco-

nomic activities to higher order socialization. These networks affect ourselves,

our internal perceptions, our families, our jobs, and politics at every level.

This wealth of data has created a wealth of open problems. The first

was “big data,” the notion of data sets too large for traditional computing

resources and algorithms. This has been answered with a tidal wave of hard-

ware, especially distributed systems. It has also been a boon to optimization

research, with complexity calculations becoming a de facto requirement in the

development of new methods.

Relational learning, which aims to treat entities as being mutually de-

pendent and to perform inference about the dependencies, has always been in

conflict with optimization. The number of relationships to be learned grows

quadratically with the number of entities in a network; a social network which

doubles in size will quadruple the number of possible relationships. The value

of the data stored in the network, however, also rises as the depth of informa-

tion about each individual user deepens and as we gain data to make shared

inference about groups of users.
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This growth of information is not without danger, however. The in-

creasing availability data has lead to its increasing misuse, either deliberately

(e.g. fraud, surveillance, misinformation) or inadvertently. Inadvertent mis-

use can create a variety of problems ranging from classical statistical errors

like selection bias to more complex errors like model overfitting creating over-

confidence and reliance. This misuse can occur top-down by powerful actors

but also happens, perhaps more commonly, by individual users who are not

psychologically aware of the effect of the signals they consume and produce.

Chapter 2 explores a model which combines the intuitive content de-

scription of topic modelling with the user archetyping of a stochastic block-

model. The combination allows us to describe contextual relationships of users

(nodes) in the network and the content typical of the messages they exchange.

The crux of the model is the intuition that individuals in one homo-

geneous group should behave similarly when interacting with individuals of

another homogeneous group. This reduces the complexity of modeling in two

ways. First, rather than modeling n individuals, we can model k � n clusters

of people, and rather than constructing n2 models for interactions, we can

model k2 archetypal message patterns. This greatly reduces the state space of

models, which assists in fighting the enemy of O(n2) complexity.

Second, this model allows us to make inference about individuals’ in-

teractions which have not yet been observed. For instance, when trying to

make service recommendations to an individual who has not visited a store

previously, it would be useful to know how that individual has interacted with

other businesses, and how other individuals like this one has interacted the

businesses at hand.

Chapter 3 explores the concept of monotonic individual fairness. Indi-

vidual fairness (Dwork et al., 2012) formalizes the intuitive idea that similar

individuals should be treated similarly, which this work extends to formalize

the idea that individuals’ relative treatment should follow their relative quali-

fication. Put simply, individuals will reject the fairness of a system if they can

point to an individual who receives a more favorable outcome despite “worse”

attributes. Even though such relative treatment may be reasonable within the

context of historic discrimination and various concepts of group-level fairness,
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it is nonetheless controversial and generates opposition when it allows relative

treatments that generate resentment.

This work proposes a system for enforcing that the learned prediction

function maintains monotonicty w.r.t user-specific non-protected attributes.

In this context, we require a system which can learn arbitrary monotonic func-

tions over large parameters spaces. We review artificial neural networks with

modified weight structure which can generate functions that are monotonic

w.r.t. a subset of their inputs. We then show that such functions can balance

multiple objectives by maintaining comparable accuracy and group fairness

measures to non-monotonic neural networks and a related fair learning model.

Chapter 4 extends this concept to the more flexible scenario in which

monotonicity is derived from a sample of arbiter ratings. This is motivated

by two problems: the inadequacy of monotonicity w.r.t. individual attributes

to capture holistic value systems, and the difficulty of formalizing a priori

knowledge about such holistic systems. Fairness might dictate that an increase

in one attribute has a larger effect than a similar increase in another. For

example, a person who has committed a few violent felonies might considered

more dangerous than a person who has committed a large number of non-

violent misdemeanors.

The proposed model uses arbiter ratings, i.e. responses from a group

of impartial individuals on a series of queries, to assess what the the relative

treatment of individuals must be to be considered fair. Because resentment of-

ten occurs at an individual level and without consideration for larger concepts

of group fairness, we do not require that the arbiters are experts or versed in

group fairness and historic effects that could create bias.

We then propose a system which can use conditional neural networks

to simultaneously learn from the observed outcomes of historic data and the

arbiter ratings obtained by survey. This model is flexible enough to also si-

multaneously incorporate group fairness, although post hoc adjustment would

have to balance the compromises between the accuracy, resentment, and group

equality. This model is also compatible with the individual attribute mono-

tonicity of the previous chapter in the case that some a priori structure is

specified.
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We demonstrate this model in two scenarios. The first is a synthetic

example which demonstrates both the newly defined loss’s ability to recover

the probabilities of the underlying sample via pairwise relative samples and

the ability if the model as a whole to provide post hoc adjustment according to

the desired balance of accuracy and individual fairness. The second example

uses real world criminal recidivism data augmented with arbiter rating data

to demonstrate the model can be performant in real world use.

1.2 Background

1.2.1 Bayesian Inference

Bayesian statistics view the parameters of a statistical model as them-

selves being random variables based on an interpretation of probability as the

uncertainty of belief about a system or outcome. Mathematically, Bayesian

statistics relies on Bayes’ formula, derived from conditional probability as

Pr(θ|X) =
Pr(X|θ) Pr(θ)

Pr(X)
.

While classical (or frequentist) statistics focus exclusively on the likelihood

of the data (Pr(X|θ) and what values of θ produce high likelihoods of the

observed data, Bayesian statistics utlizes a posterior (a posteriori) distribution

(Pr(θ|X)) of belief about θ. This posterior distribution is estimated via a prior

(a posteriori) distribution (Pr(θ), usually of belief about the distribution) of θ

and, when a proportionate distribution is not sufficient, the evidence (Pr(X))

of the data under the model.

A variety of techniques have been developed for inference about param-

eters in Bayesian settings utilizing analytical, optimization, stochastic, and

other approaches. Chapter 2 will utilize a stochastic method based on Monte

Carlo sampling. Monte Carlo methods produce estimates about the poste-

rior of a target parameter by producing samples from a distribution which

approximates the posterior. For high dimensional θ, it is often intractible to

produce samples of all parameters simultaneously, so sampling is accomplished
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by partitioning the parameter space and iteratively updating the partitions,

e.g.

Pr(θ1|X, θ2) =
Pr(X|θ1, θ2) Pr(θ1, θ2)

Pr(X, θ2)
.

Since Pr(X, θ2) doesn’t depend on θ1, it can be viewed as a normalizing con-

stant in the posterior and is usually omitted, leading to a proportional expres-

sion,

Pr(θ1|X, θ2) ∝ Pr(X|θ1, θ2) Pr(θ1, θ2).

Depending on the exact setting, a variety of tools can be used to generate

samples of θ1, including relatively old methods like the MetropolisMetropolis

et al. (1953) algorithm or Gibbs samplingGeman and Geman (1984) and rela-

tively modern methods like Hamiltonian Monte CarloGirolami and Calderhead

(2011) and the No-U-Turn Sampler (NUTS)Hoffman and Gelman (2014).

1.2.2 Topic Models

Topic models are a popular family of hierarchical Bayesian models for

semantic analysis of corpora of documents. The canonical model of this type

is Latent Dirichlet Allocation Blei et al. (2003), where each document is asso-

ciated with a Dirichlet-distributed distribution over T “topics”, which them-

selves are Dirichlet-distributed distributions over words that tend to concen-

trate on semantically coherent topics. Each word in the document is assumed

to have been generated by sampling a topic from that document’s distribution

over topics, and then sampling a word from the topic’s distribution over words.

This basic model has been extended in a number of directions. A hier-

archy of Dirichlet processes can be used to construct a Bayesian nonparametric

variant with an unbounded number of topics (Teh et al., 2007); a logistic nor-

mal distribution can be used to induce correlations between topics (Blei and

Lafferty, 2007); time dependence has been incorporated to track topic evolu-

tion over time (Blei and Lafferty, 2006).

5



1.2.3 Stochastic Blockmodels

Stochastic blockmodels (Wang and Wong, 1987; Snijders and Nowicki,

1997) are a popular class of generative models that assume that each node

within a network is associated with one of K latent clusters or communities.

Each pair (k, `) of communities is associated with a latent parameter λk,`,

which parametrizes the interactions between members of those communities.

Typically, the network is assumed to be binary, and the interactions are mod-

eled as Bernoulli random variables.

A number of variants to the basic stochastic blockmodel have been

proposed. (Karrer and Newman, 2011) uses a gamma/Poisson link in place of

a beta/Bernoulli, to obtain distributions over integer-valued networks, and also

incorporates a per-node parameter that allows nodes in the same community to

have different degree distribution. The Infinite Relational Model (Kemp et al.,

2006) allows a potentially infinite number of communities, with membership

probabilities distributed according to a Dirichlet process. Rather than restrict

each node to a single cluster, the Mixed Membership Stochastic Blockmodel

(Airoldi et al., 2008) associates each node with a distribution over clusters,

allowing nodes to perform several social roles.

1.2.4 Neural Networks

Neural networks are a class of extremely functions defined by a series

of alternating linear and non-linear transformations. The theory that neu-

ral networks can act as universal function approximators goes back several

decadesCybenko (1989), and since then their use has grown steadily.

A single layer of a network can be expressed as

hl = fl(hl−1;Wl, bl, σ) = σ (Wlhl−1 + bl)

with hl being the output of the l’th layer, Wl being a matrix of weights de-

scribing a linear transformation from R|hl−1| to R|hl|, a bias vector bl, and a

non-linear transformation function on R|hl−1|. It commonly notated that h0 is

the input x and hL, i.e. the output of the final L’th layer, is the output y.
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There are several significant drawbacks of neural networks: the weight

matrices Wl incur an extremely large number of parameters, the combination

of exchangeable weight matrices and non-linear activation function creates a

highly-multimodal and non-convex parameter space, and the resulting func-

tions are prone to overfitting sample data.

1.2.5 Fairness in Machine Learning

Machine learning algorithms trained to infer relationships, classify in-

dividuals or predict individuals’ future performance tend to replicate biases

inherent in the data (Caliskan et al., 2017; Bornstein, 2018; Angwin et al.,

2016). Worse, when these algorithms are used as tools in policy decision mak-

ing, they can form parts of feedback loops that magnify discriminatory effects.

For example, predictive policing algorithms aim to predict where crimes will

take place, but are trained on data from where crimes are reported or arrests

are made – which can be skewed by biased policing and might not reflect the

true crime map. If police officers are sent to areas with high predictive crime

rate, they will tend to make more arrests there, increasing the algorithm’s

confidence and amplifying discrepancies between the crime rate and the arrest

rate (Ensign et al., 2018; Lum and Isaac, 2016).

1.2.5.1 Fairness Metrics

Definitions of fairness in machine learning are generally (but not exclu-

sively) divided into two camps based on their level of attention: group-level

fairness and individual-level fairness.

Individual fairness aims to ensure that two individuals u and v with

non-protected attributes Xu, Xv have similar outcomes if Xu and Xv are sim-

ilar, even if their protected attributes differ. Concretely, (Dwork et al., 2012)

describes a score function f as individually fair if it is Lipschitz-continuous

w.r.t. some metric D on X, i.e.

d(f(Xu), f(Xv)) ≤ D(Xu, Xv) ∀ u, v ∈ U (1.1)

where d is a metric on the space of outcomes. This encapsulates the notion
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that if two individuals are similar in terms of non-protected attributes, they

should have similar outcomes.

Conversely, group fairness metrics aim to minimize population-level im-

balances. For example, the notion of demographic parity (Dwork et al., 2012)

requires that the predicted outcome Ŷ is independent of the protected variable

A. Equalized odds (Hardt et al., 2016) requires that the predicted outcome Ŷ

is independent of A conditioned on the true outcome Y , allowing a predictor

to depend on A via Y . Equalized opportunity (Hardt et al., 2016) relaxes this

condition in a classification task where the outcome Ŷ = 1 is seen as more

desirable than Ŷ = 0, to require conditional independence between predictor

Ŷ and protected variable Â only when Y = 1. Agarwal et al. (2018) show

that demographic parity, equalized odds, and their variants can be expressed

in terms of a set of linear constraints. In many cases, individual notions of

fairness are at odds with group notions of fairness. For example, Dwork et al.

(2012) shows that individually fair functions achieve perfect demographic par-

ity if and only if the distribution over individuals is similar across demographic

groups.

1.2.6 Fair Methods

Since Dwork et al. (2012), a variety of fairness-related methods have

been developed, with the majority focusing on group fairness metrics. Some

work to create fair representations (Dwork et al., 2012; Zemel et al., 2013;

Madras et al., 2018) of the data so that whatever processes then use the

representations can guarantee to be equally as fair. These representations

rarely consider individual fairness, although regularization techniques often

produce an embedding function that is sufficiently smooth that a Lipschitz

bound on the transformation could likely be made to estimate the distance

function under which the representation has individual fairness.

An alternative approach is to learn a single classifier on X to predict Y ,

and to encourage fairness by regularization using a fairness-promoting penalty

(Kamishima et al., 2011, 2012; Berk et al., 2017) or constraints (Zafar et al.,

2017a,b; Agarwal et al., 2018). If the classifiers used are Lipschitz-continuous,

then they are all individually fair, since each individual is subject to the same
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classification function. The form of this function is governed by a trade-off be-

tween predictive accuracy, and some appropriate measure of (group-level) fair-

ness. While this trade-off means regularization approaches may achieve lower

accuracy and/or group-level fairness than representation-based approaches,

their individual fairness yields transparency in implementation and avoids sit-

uations where individuals would have different outcomes under counterfactual

protected attributes.

Others have considered the idea of individual-level comparisons; Bal-

can et al. (2018) explore the concept of “envy freeness” in classification in the

context of individual-specific utility functions, where a classifier can be opti-

mal when no individual’s utility function would be higher if they received the

predicted outcome (or distribution of outcomes) given to an individual with

different attributes. Lipton et al. (2018) study concepts of impact disparity

and treatment disparity, where impact disparity is similar to statistical parity,

that protected classes should be treated similarly overall. They conceive of

treatment disparity, a concept of individual fairness requiring that an individ-

ual’s prediction not change if their protected attributes were counterfactually

changed.
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Chapter 2

Stochastic Blockmodels with Edge Information

2.1 Overview

Stochastic blockmodels allow us to represent networks in terms of a

latent community structure, often yielding intuitions about the underlying so-

cial structure. Typically, this structure is inferred based only on a binary

network representing the presence or absence of interactions between nodes,

which limits the amount of information that can be extracted from the data.

In practice, many interaction networks contain much more information about

the relationship between two nodes. For example, in an email network, the

volume of communication between two users and the content of that commu-

nication can give us information about both the strength and the nature of

their relationship.

In this work, we propose the Topic Blockmodel, 1 a stochastic block-

model that uses a count-based topic model to capture the interaction modal-

ities within and between latent communities. By explicitly incorporating in-

formation sent between nodes in the network representation, we are able to

address questions of interest in real-world situations, such as predicting re-

cipients for an email message or inferring the content of an unopened email.

Further, by considering topics associated with a pair of communities, we are

better able to interpret the nature of each community and the manner in which

it interacts with other communities.

1Author’s note: This work was developed concurrently and independently to Bouveyron

et al. in Bouveyron et al. (2018), who develop a similar model, propose a different inference

strategy, and apply it to the Enron data set as well as others.
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2.2 Introduction

A key focus in statistical network analysis has been the search for low-

dimensional representations of the observed structure. One of the most com-

monly used frameworks is the stochastic blockmodel (Wang and Wong, 1987;

Snijders and Nowicki, 1997), where nodes are assumed to belong to one of K

latent communities.

Typically, the networks modeled using stochastic blockmodels are bi-

nary, and interactions are modeled as Bernoulli random variables. However,

binary interaction networks contain minimal information about the relation-

ship between each pair of nodes, leading to a weakly informative likelihood.

The presence or absence of an interaction between two nodes conveys only

a single bit of information, meaning that for moderately-sized networks the

posterior distribution can be very disperse. This in turn makes it difficult to

infer fine-grained structure.

Fortunately, in real-life social networks, we typically have more infor-

mation about the interaction between two entities. For example, in an email

network, the number of emails sent between two users can be seen as a proxy

for interaction strength. Further, the content of emails may be used to offer

more information regarding the nature of the relationship between two indi-

viduals. Despite this rich trove of information associated with interactions,

there has been little attempt in the blockmodel literature to exploit text sent

across a network in learning community structure.

We propose the Topic Blockmodel, a network model that represents the

interaction between two nodes not as a binary indicator variable, but as the

totality of their communication. Concretely, we assume that an interaction

comprises a sequence of words, such as an email chain or a conversation. Each

pair of communities is associated with a count-based topic model which governs

both the volume and the content of interactions between members of those

communities.

The benefits of this richer formulation are two-fold. First, by asso-

ciating a pair of communities with a distribution over topics rather than

just a probability of interaction, we improve interpretability of the commu-

nities found. By considering the topics afforded high probability for a given
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community-community pair, we can automatically generate an interpretable

label characterizing the pair.

Secondly, we can use the resulting model to ask questions of interest

about the network. For example, an email provider might wish to suggest

recipients for an email being composed. By considering both the set of people

with whom the author has previously corresponded and the text of the com-

posed email, the Topic Blockmodel can make better predictions than a binary

or integer-valued stochastic blockmodel. Another example might be flagging

emails in a security application, where we want to identify emails on a given

topic: by jointly modeling interactions and topics, we can use community in-

formation to make predictions about the topical content of an email based on

its sender and recipient, even if the email is encrypted.

We begin in Section 2.3 by reviewing the stochastic blockmodel frame-

work, and discussing existing methods that incorporate both network and

topic information. We then present the Topic Blockmodel in Section 2.4. Af-

ter briefly describing inference in Section 2.5, we showcase the performance of

the Topic Blockmodel on real data in Section 2.6. By looking at a naturally

generated network of emails, and a semi-realistic network based on characters

in a play, we demonstrate that the Topic Blockmodel yields both interpretable

clusters, and impressive predictive performance both in terms of recipient pre-

diction given a communication’s text and author, and topic prediction given a

communication’s sender and recipient. Finally, we discuss possible extensions

in Section 2.7.

2.3 Background

The Topic Blockmodel presented in this work is a stochastic blockmodel

that incorporates both a count model and a topic model in its likelihood.

Sections 1.2.3 and 1.2.2 introduced stochastic blockmodels and topic models;

this section discusses existing models that combine these approaches.
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2.3.1 Existing Network-Based Topic Models

A number of works have attempted to combine network and topic mod-

els. They loosely fall into two camps: models that treat the network as a fixed

covariate used to guide the topic model; and models that jointly model a corpus

of documents and an associated network. An example of the first type of model

is the Author-Recipient Topic Model (McCallum et al., 2005), which uses the

network to specify a separate topic distribution for each sender-recipient pair.

This does not allow for the elucidation of community structure, or provide

conditional distributions over recipients.

The second type of model treats the network and the text as two related

datasets described using a single probabilistic model. The Relational Topic

Model (Chang and Blei, 2009) and the Poisson mixed-topic link model (Zhu

et al., 2013) use the topic assignments of two documents to determine the prob-

ability of an interaction between them, resulting in a binomially-distributed

number of links associated with each document. The Citation Author Topic

Model (Tu et al., 2010) associates each topic with a distribution over words

and a distribution over cite-able authors, and uses this to generate a set of

interactions.

Another model that falls under this framework is the Joint Gamma

Process Poisson Factorization (J-GPPF) model (Acharya et al., 2015), which

models interactions between nodes using an infinite blockmodel and associates

each community with a distribution over topics; the topics associated with an

author’s community membership are used to generate documents written by

that author. The J-GPPF model is the closest approach to this work, since

it explicitly clusters users into communities and uses those communities to

guide a topic model. However, like all the models described above, the J-

GPPF model assumes the (binary) network is modeled as a distinct entity

from the documents. This is appropriate where an individual is associated

both with a collection of documents and a set of connections—for example,

in a scientific setting, the documents might be an author’s papers, and the

connections might be the set of people they have cited. J-GPPF does not

translate into this work’s setting, where the network is implicitly defined by

the text sent across it.
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By contrast, rather than conditioning on the network, or modeling it

jointly, the Topic Blockmodel explicitly uses a topic model as a link function in

a stochastic block model. Treating the text and the relationship as equivalent

captures the idea that the collection of documents sent from node s to node r

encapsulates their relationship. In this setting, we extract information not just

from the fact that Alice sent emails to Bob about football; we also make use of

the fact that Alice sent no messages to Claire. This absence of a link between

Alice and Claire is informative about the underlying community structure.

2.4 Stochastic Blockmodel with Topic Links

In summary, we adopt the Poisson links introduced by (Karrer and

Newman, 2011) to capture the communication volume between nodes. We

place conjugate Beta priors on the λk,`, and a Dirichlet-multinomial prior on

the community memberships. This model could be extended to incorporate the

nonparametric and mixed membership behavior described in 1.2.3; however as

we discuss in Section 2.7, this would significantly increases the computational

cost of the model and we leave this for future work.

Following the basic stochastic blockmodel framework, we assume a dis-

tribution φ ∼ DirichletK(ξ0) over K communities, and associate each node

s with a cluster cs ∼ Discrete(φ) sampled from this distribution. We then

associate each pair (k, `) of communities with a set of parameters λk,`.

Unlike the binary stochastic blockmodel, where λk,` ∈ (0, 1) is a beta-

distributed random variable used to parameterize Bernoulli links, we let λk,` =

(λ
(1)
k,`, . . . λ

(T )
k,` ) be a vector of gamma-distributed random variables. The tth

element of this vector, λ
(t)
k,`, controls the number of words in topic t that are

sent from a member of community k, to a member of community `. Concretely,

we let n
(t)
s,r, the number of words in topic t sent from node s to node r, be

distributed according to Poisson(λ
(t)
cs,cr). The total number of words, n

(·)
s,r =∑T

t=1 n
(t)
s,r, sent from node s to node r is therefore Poisson-distributed with

parameter λ
(·)
cs,cr =

∑T
t=1 λ

(t)
cs,cr . Marginally, λ

(·)
cs,cr is a Gamma(Tαλ, βλ) random

variable.

In order to complete the model specification, I specify a topic-specific
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distribution ηt ∼ DirichletV (κ) over the size-V dictionary for each of the T

topics. For each of the n
(t)
s,r words associated with topic t, we then sample

a word token according to ηt. The full generative process can therefore be

summarized as

ηt ∼DirichletV (κ), t ∈ {1, . . . , T}
φ ∼DirichletK(ξ0)

cs ∼Discrete(φ), s ∈ {1, . . . , S}
λ
(t)
k,` ∼Gamma(αλ, βλ), k, ` ∈ {1, . . . , K}
n(t)
s,r ∼Poisson(λ(t)cs,cr) s, r ∈ {1, . . . , S}

w
(t)
s,r,i ∼Discrete(ηt), i ∈ {1, . . . , n(t)

s,r}.

(2.1)

Here, w
(t)
s,r,i is the identity of the ith token sent from node s to node r under

topic t. Rather than simply have two nodes’ community memberships deter-

mine the probability of an interaction between them, in the Topic Blockmodel

each pair of communities provides a distribution over the number of words sent

in each of T topics, determining both the overall volume of communication and

its semantic content.

An equivalent specification can be obtained by noting that, conditioned

on the total number of words n
(·)
s,r sent from node s to node r, the assign-

ment of words to topics is given by a multinomial distribution parameter-

ized by θcs,cr =
(
λ
(1)
cs,cr , . . . , λ

(T )
cs,cr

)
/λ

(·)
cs,cr . Further, this vector of probabili-

ties θcs,cr is independent of the normalizing constant λ
(·)
cs,cr , and is distributed

DirichletK(αλ). If we let zs,r,i = t if the ith word sent from node s to node r

is in topic t, we can rewrite the model as

λ
(·)
k,` ∼Gamma(Tαλ), k, ` ∈ {1, . . . , K}
θk,` ∼DirichletT (αλ)

n(·)
s,r ∼Poisson(λ(·)cs,cr) s, r ∈ {1, . . . , S}

zs,r,i ∼Discrete(θcs,cr), i ∈ {1, . . . , n(·)
s,r}

ws,r,i ∼Discrete(ηzs,r,i),

(2.2)

where the distributions over ηt, φ and cs are as given in Equation 2.1.
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These two equivalent formulations prove useful for inference. As we will

see in Section 2.5, the Dirichlet-multinomial formulation of Equation 2.2 allows

us to use standard LDA updates for the zs,r,i. Conversely, the gamma-Poisson

formulation of Equation 2.1 yields a straightforward-to-calculate likelihood for

Gibbs sampling the cluster assignments.

The Topic Blockmodel described above offers clear advantages over the

models described in Section 2.3.1, without adding unnecessary complexity. In

the models discussed previously, either the network was treated simply as a

covariate, or it was modeled separately in a manner that assumes a marginally

Binomial distribution over the number of recipients. This model is appropriate

in the setting where the documents are the network, and the strength of an

interaction is directly implied by the length of a document. In addition, we

obtain latent community structure, which was not available from most of the

models discussed previously.

2.5 Inference

Since the hierarchical model is composed of conjugate pairs and we can

separate the distribution over the total number of words from the conditional

distribution over the nature of those words, construction of a Gibbs sampler is

straightforward. This sampler iteratively updates the community assignments

cs for each node s, and the topic assignments zs,r,i for each word.

Conditioned on the community memberships cs and the number n
(·)
s,r of

words sent from node s to node r, the updates for the topic assignments zs,r,i
are standard LDA updates (see for example (Griffiths and Steyvers, 2004)),

except with a topic mixture for each cluster pair rather than each document.

Conditioned on the topic assignments, we can sample the cluster mem-
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berships according to

P (cs = k|rest) ∝ (m−sk + ξ0)

×
K∏
j=1

T∏
t=1

P ({n(t)
s,r : cr = j}|cs = k, rest)

×
K∏
j=1

T∏
t=1

P ({n(t)
r,s : cr = j}|cs = k, rest),

(2.3)

where m−sk is the number of nodes in community k (excluding the sth node).

The likelihood terms in the second and third line are straightforward to cal-

culate due to gamma-Poisson conjugacy.

2.6 Experimental Evaluation

In order to assess the interpretability and predictive power of the pos-

terior obtained using the Topic Blockmodel, we ran experiments on two real-

world datasets, comparing against a range of competing models.

2.6.1 Datasets

We considered two datasets: A real-world email network and a network

of fictional characters.

ENRON emails: The ENRON email dataset (Leskovec et al., 2009) is a

commonly used dataset for social network research, and is very well-suited to

this setting: correspondents belong to a closed network of company employees

resulting in a fairly dense network, and the text of emails is included in the

dataset. We considered all emails found in the Sent folders of ENRON-based

email addresses, that were sent only to other ENRON-based email addresses,

and excluded individuals who sent and received fewer than 10 emails. We

removed standard stopwords, plus any words that occur more than 500 or

fewer than 10 times in the corpus. This resulted in a dataset with a total of
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48,064 non-stopwords sent between 90 email addresses, with a dictionary of

length of 944.

Interactions in “A Midsummer Night’s Dream”: Due to a lack of

publicly-available email interaction networks, we supplement the ENRON dataset

with an interaction network automatically generated from Shakespeare’s “A

Midsummer Night’s Dream”. We considered each speech a directed interaction

from the speaker to the last person to speak; the first speech of each scene is

not included in the dataset.

Admittedly, this dataset suffers limitations. The social network and in-

teraction structure are not naturally occurring and are inherently stylized.

Further, this data extraction method is imperfect: during multiple scenes

between the Athenian characters, Puck and other fairy characters are on-

stage but assumed invisible to the humans. Puck’s asides and soliloquies are

recorded as messages to the last human to speak, although this is not the au-

thor’s intended interpretation. Despite these limitations, we find this dataset

a useful addition since the main characters will be familiar to many readers,

and naturally fall into a range of communities, such as the young Athenian

lovers (Hermia, Lysander, Demetrius, and Helena) and the characters in the

play-within-a-play (Prologue, Lion, Pyramus, Thisbe, Wall, and Moonshine).

We removed standard stopwords, Elizabethan words that are equivalent

to these stopwords, and the names of characters, plus words occurring more

than 50 times in the play, resulting in a total of 5913 non-stopwords sent

between 28 characters, with a dictionary of length 2,204.

2.6.2 Comparison Methods

We compare the Topic Blockmodel against a range of comparison mod-

els, including models for text that take a network as a covariate; network

models that ignore text; and standard topic models.

• Latent Dirichlet allocation (LDA) (Blei et al., 2003), a topic model

that ignores network structure.
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• The Author Recipient Topic Model (ART) (McCallum et al., 2005),

which uses the network as a covariate, and has a separate distribution

over topics for each sender/recipient pair.

• A stochastic blockmodel with a gamma/Poisson link, which we will refer

to as the Poisson Stochastic Blockmodel (Poisson-SBM). This can

model the number of words exchanged, but not their content.

• The Clustered Node Topic Model (CNT), a reduced version of the

Topic Blockmodel which does not use a distribution over counts, instead

conditioning on the observed counts. This model begins with the same

distribution over community assignments and, similar to the specification

in Equation 2.2, specifies a distribution for the vector of probabilities

θcs,cr for each pair of communities, without any rate parameters. In full,

φ ∼DirichletK(ξ0)

cs ∼Dirichlet(φ), s = 1, . . . , S

θk,` ∼DirichletT (αλ)

zs,r,i ∼Discrete(θcs,cr), i ∈ {1, . . . , n(·)
s,r}

ηt ∼DirichletV (κ), t = 1, . . . , T

ws,r,i ∼Discrete(ηzs,r,i).

(2.4)

Due to the similarities between the models, all models were sampled

using appropriately modified versions of the sampler described in Section 2.5.

During the first 500 burn-in samples, we used simulated annealing to improve

exploration, with the temperature set as τ = e1−m/500, where m is the iteration.

Hyperparameters were sampled with low-information priors using Metropolis-

Hasting sampling. The number of topics was selected by cross validation,

and the number of communities was set to S/3 for Shakespeare and S/4 for

ENRON, where S is the number of nodes.

2.6.3 Qualitative Evaluation

We begin with a qualitative analysis of the community structure found

using the Topic Blockmodel on “A Midsummer Night’s Dream”, since reader

19



Figure 2.1: Communities found in “A Midsummer Night’s Dream”, with

highest-probability topics associated with community pairs.
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Figure 2.2: Communities found in the ENRON e-mail corpus for select e-mail

participants, with highest-probability topics associated with community pairs.
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Figure 2.3: Communities found in the ENRON e-mail corpus for all ENRON

internal e-mail participants.
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familiarity with the characters allow for easy evaluation of the clusters found.

Figure 2.1 shows the community structure obtained using a single sample from

the Markov chain (to avoid alignment issues). Here, the shade of element (s, r)

of the matrix represents the gamma random variable λ
(·)
cs,cr governing the total

number of words sent from node s to node r. The community structure can be

inferred by looking at the discontinuities: nodes in the same community have

the same parameter.

The names of the characters are given on the left hand axis, and some

interesting communities are manually annotated on the right. Note that the

communities generated are fairly well aligned with the character groupings

present in the play. For example, Demetrius, Helena, Hermia, and Lysander

represent a ring of romantically entangled Athenians; Egeus, Hippolyta and

Philostrate are elder Athenian nobility; Wall, Prologue, Thisbe, Moonshine,

Pyramus and Lion are all characters in the play-within-a-play; Titania and

Puck are both fairies who interact with Oberon in a similar manner. The

outliers are mostly characters with very few lines – for example the minor

fairies and the minor mechanicals are intermingled, but all these characters

have very few lines.

To demonstrate how the topics characterize the community’s relation-

ships, we consider four community-community pairs that discuss love - a major

theme of “A Midsummer Night’s Dream”. While all the selected pairs contain

a shared topic of romantic words, the additional topics shed nature on the

communities’ nature. The star-crossed Athenian lovers talk among themselves

of love and hate, and talk to Duke Theseus about the consequences of their

romantic choices; Oberon talks to Puck and Titania of magical slumber and

fairy mischief; the play-within-a-play characters talk about aspects of the play

and appeal to their audience.

Figures 2.2 and 2.3 show the discovered latent social network between

a subset of the ENRON employees. For ease of interpretability, Figure 2.2

provides an annotated subset of the Enron employees, their exchanged topics,

and the employees’ roles in the company; Figure 2.3 shows the full network.

From Figure 2.2 we see that attorneys Gerald Nemec and Dan Hyvl are in a

community, as are the trading executives Barry Tycholiz and Phillip Allen, as

are executives involved in energy development and risk Rick Buy, Sally Beck,
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Vince Kamisnki, and Mike McConnell. The fourth community shown is again

legal professionals, but with different subject areas.

In the absence of this job title information, one could still use the topics

associated with the community-community pairs to improve understanding of

the latent network. We see that the attorneys’ emails are focused on agree-

ments and contracts, and supplying advice to the other employees. When

the trading executives are talking with the development community, however,

they are primarily discussing elements of economic forecasts (market, price,

cost, rate, contract, tariff, etc.). When the second attorney group is writing to

the risk group, their topics skew more toward legal risks (e.g. litigation) and

government affairs (e.g. dealing with the Tennessee Valley Authority (TVA))

than the contracts advice that the first group of attorneys gives to the trading

executives.

2.6.4 Quantitative Evaluation

We evaluated the predictive performance of the topic blockmodel on

four metrics:

1. Log predictive likelihood of the text of held-out documents (conditioned

on number of words sent, since this is required for most of the comparison

methods). This is designed to mimic the task of predicting the topical

content of an email from its sender and recipient.

2. Log predictive likelihood of the recipient of a held-out email/speech,

conditioned on the sender and the text of the communication. This is

designed to mimic the task of suggesting recipients for an email.

3. Log predictive likelihood of the sender and recipient of a held-out email/speech.

This is designed to showcase the fact that using the text information al-

lows us to better model latent community structure.

4. Log predictive likelihood of the word counts of held-out sender-receiver

pairs. This is designed to show that the inclusion of topic information

improves count prediction.
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Table 2.1: Log predictive likelihood (± one standard error) of document text,

conditioned on sender and recipient where applicable.

Model ENRON Shakespeare

LDA -410,110.2 ± 50.8 –48,716.2 ± 4.6

ART -365,600.5 ± 47.7 -47,495.5 ± 4.8

CNT -368,983.5 ± 89.2 -46,076.6 ± 3.9

Topic Blockmodel -345.632.5 ± 4.1 -46,275.9 ± 4.0

Table 2.2: Log predictive likelihood (± one standard error) of document re-

cipient, conditioned on document content and sender where applicable.

Model ENRON Shakespeare

ART -204,585.3 ± 6.4 -19,809.7 ± 1.1

CNT -216,278.9 ± <0.1 -19,703.3 ± <0.1

Poisson-SBM -160,984.7 ± 148.6 -14,587.2 ± 35.9

Topic Blockmodel -137,199.8 ± 53.2 -12,997.8 ± 20.6

2.6.4.1 Log-likelihood of words in held-out documents

For the first task, we randomly held out 10% of documents, and evalu-

ated the predictive log likelihood of this test set using the comparison models

with a topic model component (i.e. LDA, ART, and CNT). The log predictive

likelihoods are shown in Table 2.1.

We see that the Topic Blockmodel performs significantly better than

the competitors on the ENRON dataset. In this realistic setting, the number of

emails sent between two individuals is highly indicative of their relationship, so

we see a significant advantage from jointly modeling the number of words and

their content. In particular, we see that the Topic Blockmodel outperforms
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Table 2.3: Log predictive likelihood (± one standard error) of document sender

and recipient, conditioned on document content where applicable.

Model ENRON Shakespeare

ART -416,588.6 ± 6.8 -39,580.0 ± 1.0

CNT -432,557.7 ± <0.1 -39,406.7 ± <0.1

Poisson-SBM -347,479.6 ± 148.6 -31,400.3 ± 35.9

Topic Blockmodel -321,127.8 ± 53.3 -29,614.0 ± 20.6

Table 2.4: Log predictive likelihood (± one standard error) of sender and

recipient counts.

Model ENRON Shakespeare

Poisson-SBM -92,851.2 ± 12.1 -103,411.4 ± 0.6

Topic Blockmodel -88,730.4 ± 3.1 -102,549.8 ± 0.2

our Clustered Node Topic Model variant, which does not model counts and

treats zero edges as missing.

On the Shakespeare data, the Topic Blockmodel performs slightly worse

than the Clustered-Node Topic model, though still better than LDA or ART.

We believe that this is due to the artificial nature of the network. The commu-

nity structure in “A Midsummer Night’s Dream” is man-made, and designed

so that the many separate communities interact in complex, artful manners.

Moreover, by assuming a speech is directed to (only) the previous speaker, we

are working with a noisy approximation to Shakespeare’s intended interaction

network. Since the Clustered-Node Topic Model does not model the number

of links, it will be less hampered by an unrealistic network structure.
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2.6.4.2 Recipient Attribution

For the second task, designed to mimic automatic email recipient sug-

gestion, we again held out 10% of documents and predicted the recipient of

each document based on the document’s length, text and sender. We compared

against the three comparison methods with a network component, namely

ART, CNT, and the Poisson Stochastic Blockmodel. Prediction in ART and

CNT does not take into account the number of words sent; prediction in the

Poisson Stochastic Blockmodel does not take into account the specific words

sent. Table 2.2 shows the test set log predictive likelihood for the four methods

on the recipient attribution task.

In the ENRON e-mail data, we again see that the Topic Blockmodel

performs significantly better than any of the competitive models in identifying

the correct sender-recipient pair, with the Poisson Stochastic Blockmodel com-

ing second and the two models that do not consider word counts performing

worst. The relative performance of the Poisson Stochastic Blockmodel (which

does not consider topic distributions) versus CNT and ART (which do not

consider word counts) suggests that count modeling, rather than topic model-

ing, is the more important component in this setting; however by combining

these two components the Topic Blockmodel is able to make use of the topic

distribution to improve prediction over the purely count-based model.

We see a similar pattern in the Shakespeare data: the Topic Blockmodel

outperforms the Poisson Stochastic Blockmodel and all other models, and the

models that just consider topical content of documents perform worse than the

Poisson Stochastic Blockmodel that only considers counts. This is again likely

for similar reasons to ENRON: the models on interaction intensity are able to

down-weight pairs that very rarely interact, greatly boosting the likelihood of

pairs that are expected to interact, and further identifying the correct topic

mixture within high-intensity community pairings.

2.6.4.3 Sender/Recipient Attribution

For the third task, we again held out 10% of documents and predicted

both sender and recipient based on a document’s length and text, comparing

against ART, CNT and the Poisson Stochastic Blockmodel. The resulting log
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predictive likelihoods, shown in Table 2.3, tell a similar story to the sender

attribution task: the Poisson Stochastic Blockmodel, which only considers

document length, outperforms CNT and ART which only consider document

text, suggesting document length is more important than document seman-

tic content in this task. However, the Topic Blockmodel, by making use of

both length and semantic content, is able to outperform all three comparison

methods on both tasks.

2.6.4.4 Edge Count Prediction

Finally, we withheld 10% of sender-receiver pairs in the network and

predicted the word count of the withheld links based on the assigned commu-

nities of the sender and receiver. Table 2.4 shows that, in both the ENRON

and Shakespeare data sets, the Topic Blockmodel significantly improves on the

Poisson Stochastic Blockmodel, which is the only comparison model discussed

which models the word counts of heldout links.

2.7 Discussion and Future Work

In this work we introduced a unified network and topic model, the Topic

Blockmodel. Inspired by existing stand-alone network and topic models, the

Topic Blockmodel can be used to identify and label communities in a network

and make predictions about interactions.

We have focused here on networks where the interactions are textual in

nature. However, we may also have networks where interactions take the form

of images, audio, or some combination of media. A future research direction

might be to explore augmenting this model with other forms of media to better

make use of information shared across the network, using likelihoods such as

those described in (Cao and Fei-Fei, 2007), (Niu et al., 2012) or (Kim et al.,

2009).

Other extensions could be obtained by using a richer distribution over

the community structure. We chose a simple, parametric model with single-

community membership to allow for straightforward computation; however the
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potential for mixed-membership or nonparametric versions is clear. Another

interesting avenue for research is to make the distribution over communities

explicitly dependent on some set of covariates such as time of email or geo-

graphical location of nodes, creating a dynamic model.

One limitation of the stochastic blockmodel framework is that it is only

appropriate when our network is dense – that is, when the number of non-zero

edges grows quadratically with the number of nodes. This is a reasonable

assumption in relatively small networks where it is likely that all nodes have

had a chance to interact with each other – for example, groups of individuals

within a school, company or organization, as we have explored in this work.

An interesting parallel line of research, which we are currently explor-

ing, is models for text-based interaction in sparse data. Such a model would

require replacing the stochastic blockmodel component of the model with a dis-

tribution appropriate for sparse graphs, such as those described by (Caron and

Fox, 2017), (Veitch and Roy, 2015), (Cai et al., 2016), (Crane and Dempsey,

2016) and (Williamson, 2016). Without such a significant change to the model,

one possible direction would be to add node-specific degree-correcting param-

eters as proposed by (Karrer and Newman, 2011).
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Chapter 3

Monotonic Fairness

3.1 Overview

Classifiers that achieve demographic balance by explicitly using pro-

tected attributes such as race or gender are often politically or culturally con-

troversial due to their lack of individual fairness, i.e. individuals with similar

qualifications will receive different outcomes. Individually and group fair de-

cision criteria can produce counter-intuitive results, e.g. that the optimal con-

strained boundary may reject intuitively better candidates due to demographic

imbalance in similar candidates. Both approaches can be seen as introducing

individual resentment, where some individuals would have received a better

outcome if they either belonged to a different demographic class and had the

same qualifications, or if they remained in the same class but had objectively

worse qualifications (e.g. lower test scores). We show that both forms of re-

sentment can be avoided by using monotonically constrained machine learning

models to create individually fair, demographically balanced classifiers.

3.2 Introduction

As discussed in Section 1.2.5, machine learning algorithms trained with-

out care can reproduce latent biases in the training data used. This tendency

can be counteracted by designing algorithms that aim to yield similar accu-

racy across different demographics. One approach is to design algorithms that

explicitly use information about the protected variable in developing the al-

gorithm, whether by transforming the attributes of each demographic group
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(Dwork et al., 2012), learning embeddings that transform each demographic

group to comparable representations (Madras et al., 2018; Zemel et al., 2013),

or training separate classifiers on each group (Dwork et al., 2018a).

While these approaches are powerful tools for combating systemic in-

equalities, algorithms that aim for demographic fairness can appear unfair or

opaque on the individual level. For example, we can achieve demographic fair-

ness in college admissions by applying different cutoffs for different groups, but

individuals below the cutoff for their demographic group but above the cutoff

for a different demographic group will feel unfairly treated. Even if the differ-

ent cutoffs can be justified on a population level—for example, if certain de-

mographic groups have statistically disparate access to educational resources,

leading to lower average test scores—they are often unpopular among the class

with the stricter cutoffs, and can result in complaints and legal action. For

example, Universities’ affirmative action policies have frequently been the tar-

get of legal action from students who feel that they have been unfairly denied

entry when compared with similarly qualified members of other ethnic groups,

both past (Court, 2013, 2016, 1978) and ongoing (Court, 2014). In practice,

this often means that we must pick a single decision boundary for all groups,

even if this limits the fairness of the resulting outcome.

Conversely, algorithms that exhibit individual fairness—where two sim-

ilar individuals are treated similarly even if their demographic group differs—

can easily propagate unfairness on a population level. Schools are often highly

racially segregated due to location, and schools in wealthy, majority-white

neighborhoods tend to have more resources and funding, which are in turn

correlated with better academic performance in high school (on Civil Rights,

2018; for Education Statistics , Ed). This better performance in high school

does not necessarily translate to better performance at the university level

(Vidal Rodeiro and Zanini, 2015).

Further, even within an individually fair system, individuals might still

feel resentment towards their peers. Individual fairness can be seen as minimiz-

ing resentment between two individuals with similar attributes but different

demographic group memberships: neither individual feels they would have had

a more favorable outcome if they could switch their membership. However, it

can still lead to resentment between two individuals with different attributes,
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if those attributes admit a natural ordering: if student A has a higher SAT

score than student B and is identical on all other axes, student A would feel re-

sentment if student B had the higher acceptance probability. This can amplify

demographic discrepancies if the demographic-specific attribute distributions

differ: if the SAT scores of a minority group trended notably higher than SAT

scores of a majority group, an admissions system could still satisfy individual

fairness while accepting primarily low-scoring individuals.

The goal of this work is to automatically design decision rules that

avoid individual resentment—both resentment towards someone with similar

attributes but a different demographic group membership, and resentment

towards someone with “worse” attribute values—while minimizing population-

level unfairness. We demonstrate that this approach allows us to design rules

that trade off predictive accuracy with group notions of fairness, while avoiding

perceived unfairness on an individual level.

3.3 Notions of fairness

We consider models for individuals characterized by some set of pro-

tected or sensitive attributes Ai ∈ A and non-protected attributes Xi ∈ X.

Our goal is to predict some outcome Yi; in this work we focus on binary clas-

sification problems where Yi ∈ {0, 1}, but our approach can easily be applied

in a regression setting where Yi ∈ R.

Protected attributes might be race or gender; we assume that these

attributes are categorical, but this assumption can be relaxed. Non-protected

attributes include other information relevant to decision making, such as test

scores or credit history. These attributes might be highly correlated with our

protected variables (for example, attending a historically black university is

highly correlated with race), meaning that we cannot avoid unfair outcomes

simply by excluding the protected attributes from our analysis (sometimes

referred to as fairness through unawareness (Dwork et al., 2012)).

As discussed in Section 1.2.5.1, fairness approaches are generally di-

vided into treating at an individual or group level, however a number of ap-

proaches attempt to balance individual and group notions of fairness. Dwork
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et al. (2012) combine demographic parity with a relaxed notion of statistical

parity, where members of group A′ are first mapped to match the distribu-

tion of group A via a Lipschitz-continuous mapping. Later work expands this

idea by mapping individuals’ protected and non-protected attributes into some

latent embedding or representation that is uninformative of the protected at-

tribute (Zemel et al., 2013; Madras et al., 2018). Using such a mapping can

lead to individual resentment w.r.t. the protected attribute, however, since

changing an individual’s protected attribute value would change its embed-

ding, and hence its outcome.

An alternative approach is to learn a single classifier on X to predict Y ,

and to encourage fairness by regularization using a fairness-promoting penalty

(Kamishima et al., 2011, 2012; Berk et al., 2017) or constraints (Zafar et al.,

2017a,b; Agarwal et al., 2018). If the classifiers used are Lipschitz-continuous,

then they are all individually fair, since each individual is subject to the same

classification function. The form of this function is governed by a trade-off be-

tween predictive accuracy, and some appropriate measure of (group-level) fair-

ness. While this trade-off means regularization approaches may achieve lower

accuracy and/or group-level fairness than representation-based approaches,

their individual fairness yields transparency in implementation and avoids sit-

uations where individuals would have different outcomes under counterfactual

protected attributes.

Our approach builds upon this family of regularization-based algo-

rithms. We introduce a new measure of fairness that protects against counter-

factual resentment w.r.t. shifts in both protected and non-protected variables,

even outside the training set. Loosely, our idea of monotonic fairness protects

against two sources of resentment: the perception that one would have been

better off in a different demographic group, and the perception that one would

have been better off had they under-performed along a given axis.

Our work also complements a body of work which explores definitions

of fairness in which groups are collectively satisfied (Zafar et al., 2017a; Heidari

et al., 2018), with variations on being a priori ambivalent or being a posteriori

free of desire to switch labels as a group. These variations deal with the idea

of resentment at a class level, while we examine it at an individual level.
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Others have considered the idea of individual-level comparisons; Balcan

et al. (2018) explore the concept of ”envy freeness” in classification in the

context of individual-specific utility functions, where a classifier can be optimal

when no individual’s utility function would be higher if they received the

predicted outcome (or distribution of outcomes) given to an individual with

different attributes. This approach could not be applied to settings where

the utility function is assumed to be identical among individuals, e.g. in most

classification tasks where this is a preferred outcome that all individuals would

prefer.

“Meritocratic fairness” Joseph et al. (2016) appears similar, but differs

in that it ranks points based on the expected outcome for their attribute values

rather than the actual attribute, i.e. it is monotonic w.r.t. the expected true

outcome rather than the predictors so that (in one form) if E[Y |Xu] > E[Y |Xv]

then f̂(Xu) ≥ f̂(Xv)). Our approach differs in that we require monotonicity

w.r.t. those inputs believed to directly correlate with performance (detailed in

section 3.4).

Lipton et al. Lipton et al. (2018) study concepts of impact disparity

and treatment disparity which overlap our own. Their concept of impact

disparity is similar to statistical parity, that protected classes should be treated

similarly overall. They conceive of treatment disparity similarly to our own

class resentment, that individuals’ treatments differ based on their protected

class. Our work expands on this to incorporate score resentment, and proposes

and evaluates a concrete framework for structurally enforcing protection.

Others have considered the problem of monotonicity in fair methods.

(Kearns et al., 2017) explores the notion of monotonicity in the context of

combining rankings between groups which lack common attributes, e.g. when

comparing the athleticism of athletes from different sports. Their method

assumes that a perfect ranking is known within each sport, and compares

athletes across sports using the sport-specific CDF of the outcome variables.

Our method does not assume such a CDF estimate is obvious or accessible,

and will not produce a separate classifier for each class of examples. Similarly,

(Dwork et al., 2018b) consider decoupled classifiers for separate classes, and

how they can be combined to produce fair classification. Our model does not

learn separate classifiers, which can introduce resentment between classes, but
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instead seeks to learn a unified classifier which satisfies fairness and prediction

goals.

3.4 Monotonic fairness

Consider a model that outputs a score f(X,A) to an individual with

non-protected attributes X and protected attribute A, where higher scores in

some dimensions of X are seen as more desirable. An example of Xu being

“better” than Xv might be if the non-protected attributes correspond to SAT

score, with Xu being the higher score.

We assume in the remainder of this work that non-protected attributes

X can be represented in Rd. In general, we can subdivide X into X+ and X◦,

where X+ contains variables like SAT score, where certain values are deemed

better than others, and X◦ variables like number of years in current position,

where we do not wish to impose such value judgements.

This work considers the concept of individual resentment, which can

take the form of either class resentment and/or score resentment, which we

define below.

Definition 3.4.1. Protected Attribute Resentment (Class) Resent-

ment: Individual u experiences class resentment under function f if ∃ A′ s.t.

f(Xu, Au) < f(Xu, A
′).

Class resentment occurs when an individual who differs from another

only in protected attributes receives a less-preferred outcome than that other

individual, despite having identical non-protected attributes. Even though

there may be justifiable reasons for the discrepancy, the first individual is

likely to perceive the system as penalizing them for their protected attribute.

Definition 3.4.2. Non-Protected Attribute (Score) Resentment: Indi-

vidual u experiences score resentment under function f if there exists (X ′, A′)

such that Xu is objectively “better” than X ′ but f(Xu, Au) < f(X ′, A′).
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Score resentment captures the situation where an individual receives

a less-preferred outcome than another individual who differs only in having

“worse” scores in some dimensions – for example, a candidate being rejected

for being over-qualified for a job. While score resentment is typically not

encoded into hand-designed systems, it can easily appear in automatically

learned systems, as we discuss later in this section.

Individually fair methods ensure that two individuals with similar non-

protected attributes receive similar outcomes, avoiding the situation where an

individual feels he or she would have been better treated had they belonged to a

different demographic group—what we refer to above as protected attribute, or

class, resentment. However, individual fairness does not necessarily avoid non-

protected attribute, or score, resentment— the situation where an individual

feels he or she would have been better treated had they performed worse on

some axis.

We can ensure a score function has zero individual resentment by requir-

ing that the function does not take the protected attribute as an input (guar-

anteeing zero protected attribute resentment) and is monotone non-decreasing

w.r.t. all non-protected attributes in X+ (guaranteeing zero non-protected at-

tribute resentment). We refer to such a score function as being monotonically

fair.

Definition 3.4.3. Monotonic Fairness: A function f : X × A → R is

monotonically fair if no possible individual (X,A) ∈ X × A experiences class

resentment (Def 3.4.1) or score resentment (Def 3.4.2).

To understand the difference between individual fairness and mono-

tonic fairness, consider a system that admits students to college on the basis

of a single standardized test. If the predictor is not non-decreasing w.r.t.

that test result, a student could be in the unfair situation where they would

have been accepted if their test result were lower. Similarly, a loan applicant

might find themselves rejected for borrowing less money. Such a predictor

could arise, even if the true relationship between test score and probability

of college success is monotonic, if our training data is sparse or demographi-
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cally imbalanced in some area of the attribute space and especially in higher

dimensional settings.

The synthetic example in Figure 3.1 demonstrates such a situation.

We consider the setting where we wish to create a soft classifier, p̂i = f(Xi)

which maximizes the average score of positive predictions
∑

i p̂iYi with a con-

straint on the expected number of positive classifications
∑

i p̂i—this might

correspond to admitting a fixed number of students based on their predicted

future performance. The true relationship is that Y ∼ N(X, ε). Our classes

are imbalanced and have different distributions, as shown in Figure 3.1. An

”unfair” classifier that does not aim to achieve demographic fairness, learns a

hard threshold at X = 1 but leads to 2.58 times higher odds of acceptance for

the majority class vs. the minority class.

We can achieve a more fair result by adding a penalty that encourages

demographic parityHardt et al. (2016), which requires that the probability of

a favorable outcome be independent of class, i.e.
∑

i:Ai=0 p̂i∑
i:Ai=0 1

=
∑

i:Ai=1 p̂i∑
i:Ai=1 1

. Adding

such a penalty reduces the odds ratio from 2.58 to 1.13. However, in order

to maximize demographic parity, the fair classifier ends up learning a non-

monotone function. All those with X ∈ (0.9, 4.0) receive predictions lower

than those with X = 0.9 regardless of protected attribute. Clearly, this would

lead individuals in the region to resent individuals with lower attribute values:

individuals in this range would have a better chance of a positive outcome if

they had a “worse” value of X.

By contrast, a monotonically fair classifier (”Mono. Fair”) learns a

function that avoids the score resentment present in the ”Fair” classifier, while

achieving similar demographic parity (odds ratio 1.11). No individual can

claim that another individual with a lower non-protected attribute value re-

ceived a higher probability of acceptance. This is achieved by reducing the

certainty of acceptance from those with the highest attribute values, which are

increasingly majority-dominated, and reducing the threshold attribute value

required to have any chance of acceptance.

If we add in the requirement that our score function is Lipschitz-

continuous, we can see monotonic fairness as an extension of individual fair-

ness. Where X◦ 6= ∅ and we have non-protected attributes that do not require
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monotonicity, incorporating a Lipschitz requirement avoids seemingly arbi-

trary discontinuities across X◦. Where X◦ = ∅ and where we require mono-

tonicity along all dimensions of X, the Lipschitz requirement is likely to be less

important, since any discontinuities will favor higher-valued attributes. Fur-

ther, enforced monotonicity will likely lead to smoother functions with fewer

discontinuities than non-monotone solutions.

3.5 Learning monotonic fair scores using neural net-

works

As described above, any score function whose value does not depend on

the protected attribute, and that is monotonically non-decreasing with each

dimension of X+, will have zero individual resentment under the conditions

discussed in Section 3.4.1 A number of algorithms have been proposed to learn

monotone functions; Cano et al. (2019) offers a detailed review. We choose to

use feedforward neural networks, since they are flexible and easily adapted to

a specific problem.

We restrict our analysis to situations where value comparisons are

only made between individuals who differ in a single dimension of their non-

protected attributes. In practice, this covers a large number of realistic use

cases: it is easier for a practitioner to specify orderings in such settings. Or-

dinal categorical variables can be captured either by mapping the categories

to integers, or by using dummy variables and setting the dummies for all cat-

egories worse than the actual category. We leave relaxation of these assump-

tions, and approaches for automatically learning orderings, to future work. We

also assume that ordering of attributes Xk ∈ X+ correspond to some notion

of “value”, where we wish to impose the requirement that increasing Xk does

not decrease the chance of the more desirable outcome, provided the other

attributes do not change, i.e. the relationship is monotonic. If necessary, the

1In this section, we only consider the monotonically non-decreasing case; the monotoni-

cally non-increasing case can be considered analogously.
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attributes may have been transformed by the practitioner to achieve this (e.g.

mapping categories onto the reals).

If we desire our function to be monotone non-decreasing with respect

to every dimension of X, we can enforce this by ensuring all weights in the

network are strictly positive, for example by applying some transformation

τ : R → R+ Sill (1998). In the more general setting, where we wish to be

monotone w.r.t. Xk ∈ X+ but do not require this for Xk ∈ X◦, partition the

weights in our neural network into those that will be multiplied by (functions

of) X+, and those which will not. In a simple feedforward neural network

setting, that means that in the first layer, weights corresponding to Xk ∈ X+

are forced to be positive, while weights corresponding to Xk ∈ X◦ are not.

In subsequent layers, all weights are required to be positive. Concretely, we

apply the following transformations to the unconstrained weights w`,k,i of the

neural network:

w̃`,k,i =

{
τ(w`,k,i) if ` > 1 or Xk ∈ X+

w`,k,i if ` = 1 and Xk ∈ X◦ (3.1)

h`,k = σ

(∑
i

w̃`,k,ih`−1,i + b`,k

)
. (3.2)

The output is clearly a monotone non-decreasing function2 of eachXk ∈
X+, since all weights in the path of such Xk are positive. Leaving w1,k,i

unconstrained for Xk ∈ X◦ allows for the function to be non-monotonic w.r.t.

those Xk.

In our experiments, we use an offset form of the exponential linear

unit Clevert et al. (2015) transformation,

τ(x) =

{
x if x > 1
ex−1 if x ≤ 1

, (3.3)

2We assume the use of an activation function which is also monotone non-decreasing,

which is common (e.g. ELU, ReLU, leaky ReLU, tanh, sigmoid) but not universal.
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in Equation 3.2 to transform the appropriate weights to be positive. Note that

any continuously differentiable function with strictly positive range could be

substituted; we selected the offset exponential linear unit based on experimen-

tal performance. We explore other choices in the supplement.

Figure 3.2 explores the effect of the transformations τ . We show the

outputs of two neural networks: One where all weights are transformed accord-

ing to Equation 3.3 (Mono. NN), and one where the first layer is untransformed

but subsequent layers are (Non-Mono. NN). The first network demonstrates

that this architecture is able to learn monotonic functions even when the true

function is non-monotone. The second network demonstrates that, provided

the first layer is not transformed, the transformation of weights in subsequent

layers does not interfere with fitting arbitrary functions with the usual preci-

sion (and drawbacks) of feedforward neural networks. Since we can arbitrarily

transform the edge weights between a subset of the inputs and the first layer,

we can also fit higher-dimensional functions which are monotonic only on a

subset of the inputs. See the supplement for two-dimensional examples.

Neural networks have been used to learn fair classifiers in a number of

contexts (Louizos et al., 2016; Beutel et al., 2017; Madras et al., 2018; Xu et al.,

2018). Dwork et al. Dwork et al. (2012) originally posited individual affirma-

tive action within a framework of Lipschitz smoothness. In many commonly

used architectures (including the ones used in this work), neural networks de-

scribe Lipschitz-continuous functions, although the Lipschitz constant may be

large (Szegedy et al., 2014; Gouk et al., 2018; Balan et al., 2018). One could

also enforce greater smoothness by Lipschitz continuity-aware regularization

(Gouk et al., 2018). We choose not to do so in our experiments, relying on the

monotonicity constraints to add additional regularization, to ensure that any

jumps (w.r.t. Xk ∈ X+) are individually fair, and to enforce that the effective

decision rule does not create the potential for resentment.

In addition to monotonic fairness, we also want to ensure our algorithm

has desirable group-level fairness properties. To do so, we train our monotonic

neural network using backpropagation to minimize a compound loss

L(θ) = λPLP (θ) + λFLF (θ)
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evaluated on a minibatch, where LP is a prediction loss, LF is a fairness loss,

and λP , λF ≥ 0 are weights governing the relative importance assigned to each

loss.

The fairness loss, possibly derived from a constraint, encourages a de-

sired form of fairness, and is calculated across the entire minibatch. A vari-

ety of differentiable losses have been developed that could be deployed here

Kamishima et al. (2011, 2012); Berk et al. (2017); Zafar et al. (2017a,b); Agar-

wal et al. (2018). In our experiments, we use the demographic loss proposed

by Zemel et al. (2013), |ȳ0− ȳ1|, i.e. the absolute difference in mean prediction

between majority and minority classes.

The prediction loss is some loss that penalizes predictions that are far

from ground truth, for example cross-entropy or MSE. This loss is typically

evaluated individually for each data point, and then summed over the mini-

batch.

3.6 Experiments

We evaluated our method on three real-world examples of increasing

complexity: law school admissions, COMPAS scoring of recidivism risk in

bail decisions, and German credit assessment in granting loans. In each case,

both our protected variable A and our target Y are binary. We specify our

compound loss as a convex combination of cross-entropy and equality of out-

come, following the example of Zemel et al. (2013), though other measures

are interchangeable if they are differentiable. Concretely, for a minibatch

M = (Xi, Yi, Ai)
M
i=1, we have:

L(θ;α,M) = (1− α)
1

M

M∑
i=1

− (Yi log (p̂(Xi; θ)) + (1− Yi) log (1− p̂(Xi; θ)))︸ ︷︷ ︸
LP

+α

∣∣∣∣∣∣∣
∑

i:Ai=1

p̂(Xi; θ)∑
i:Ai=1

1
−

∑
i:Ai=0

p̂(Xi; θ)∑
i:Ai=0

1

∣∣∣∣∣∣∣︸ ︷︷ ︸
LF
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where p̂(Xi; θ) is the output of our neural network, and α ∈ (0, 1) controls the

balance between fairness and prediction.

We compare against both a neural network with the same compound

loss but no monotonicity constraints—which is representative of the set of

individual-classifier methods described in Section 3.3—and the Fair Represen-

tations method Zemel et al. (2013). The Fair Representations method estab-

lishes prototypes for the data, each equipped with a location in data space and

a mean outcome value, with actual data given a mixed membership vector to

these prototypes based on a spherical Gaussian kernel. A penalty for demo-

graphic balance within each prototype’s membership rate forces predictions to

have demographic balance. This method achieves individual fairness since any

two individuals with similar (unprotected) attributes will be given a similar

outcome, and the mixed membership via kernels produces a Lipschitz-smooth

outcome function.

3.6.1 Datasets

Law school admissions data (Wightman and Ramsey, 1998): This

dataset contains data from 9800 male and 7600 female law school students3

from 1991, with an outcome variable of normalized first year average (ZFYA)

grades in law school and non-protected attributes of undergraduate grade point

average (UGPA) and LSAT score (LSAT).4 We use gender as our protected

attribute, and binarize the outcome by setting Y = 1 whenever ZFYA ≥ 0.09,

its median value. One result with an apparently erroneous UGPA of 0.0 was

removed before analysis. Figure 3.3 shows contour plots of the per-gender

3The data has a pre-separated test set of 4,358 individuals; we additionally set aside

3,486 of the training examples as a validation set.
4The LSAT exam has undergone extensive change since this data was collected in 1991.

Our analysis is motivated by the real-world dataset, but our conclusions are not necessarily

applicable to the current exam. In addition, the dataset is limited to individuals admitted

to law school and is not a representative sample of all test takers (many of whom would not

have an observed outcome).
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non-protected attribute distributions, generated by adding uniform noise to

counter the discretization of the data then using kernel density estimation.

We see that female students tend to have higher GPA, but lower LSAT scores,

than the male students (see Figure 3.3).

COMPAS data Larson et al. (2016): Released in 2016 following a pub-

lic interest investigation into machine learning methods in criminal justice,

the COMPAS dataset (named for the proprietary system which generated it)

contains the risk factors, demographic information, and two-year recidivism in-

formation for over 7,000 individuals arrested in southern Florida in 2013 and

2014. We reduced this to a two-class problem by restricting our analysis to

the 6,150 “African American” and “Caucasian” examples in the dataset,5 and

attempt to predict the two-year recidivism risk of the accused based on their

age (non-monotonic) and number of prior adult convictions, juvenile felony,

misdemeanor, and other convictions (all monotonically non-decreasing).

German credit data Lichman (2013): Covers 1,000 credit applicants in

Germany,6 including their employment, financial, and residency information,

as well as the type of loan they requested and whether they repaid it. We

treat age (already binarized by the data source) as the protected attribute.

There are 58 attributes in the dataset, of which we converted 7 into monotonic

numeric variables: (monotonic non-decreasing) current checking account bal-

ance, credit history, employment tenure, and savings balance, and (monotonic

non-increasing) investment as income percentage, length of loan in months,

and credit amount. In the case of monotone non-increasing inputs, the corre-

sponding weights in the first layer are transformed to be negative, rather than

positive. These were done intuitively, based on the idea that no one should be

penalized for having more money in reserve, more stable employment, or bet-

ter credit history, and no one should be rewarded for increasing the borrowed

5We set aside 1,235 as a test set, and 658 as a validation set for the neural network

models.
6We randomly select 20% (200) to use as a test set, and 20% of the training set (160)

are set aside by the neural network models for validation data.
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amount or requesting more months to pay it back, holding all other things

constant.

3.6.2 Models

For each dataset, we trained three models:

• FNN: A non-monotonic, feedforward Fair Neural Network with 4 hid-

den layers of 10 nodes and tanh activation functions7 using an ADAM

optimizer.

• FMNN: A Fair Monotonic Neural Network otherwise identical but with

monotonically-transformed weights where appropriate.

• FR: Fair Representations Zemel et al. (2013) with 10 prototypes.

For each model, we trained 100 versions of the model with α randomly

sampled according to a Beta(0.5, 0.5) distribution. This distribution allowed

us to heavily sample near the bounds to accommodate imbalanced losses. For

the FR model, we also randomly sampled a value for their coverage penalty Ax
from a log-uniform distribution between 10−2 and 102 (and setting LY = 1−α
and LZ = α). All datasets were scaled to have marginal variance of 1 for

all input dimensions, as unequal scales can affect coverage statistics. For the

neural network models, minibatching (size 256 for COMPAS and Law School,

128 for German) and stepwise scoring on a 20% validation subset (taken from

the training data) were used to prevent overfitting.

3.6.3 Results

In Figure 3.4 we see the usual accuracy-discrimination trade-off in the

upper row of plots. Accuracy and discrimination are defined as in Zemel et al.

(2013):

7For monotonic networks, an activation function with bounded range is useful in order

to allow the function to be non-convex; see supplemental materials.
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• Discrimination:
∣∣∣∑n:sn=1 ŷn∑

n:sn=1 1
−

∑
n:sn=0 ŷn∑
n:sn=0 1

∣∣∣
• Accuracy: 1− 1

N

∑N
n=1 |yn − ŷn|

In most cases, we see that the monotonic neural network is of similar

or slightly lower accuracy than the non-monotonic neural network or the Fair

Representations approach for a given level of discrimination. This is unsur-

prising, since the non-monotonic methods are free to learn an unconstrained

function. We would only expect the monotonic method to yield better pre-

dictions if the underlying data has a strictly monotonic generating function.

However, we see that the loss in accuracy is generally small and likely tolerable

across all three example datasets.

In the bottom row of plots in Figure 3.4, we see a different trade-off: the

cost in individual resentment for improving group fairness. Here, resentment

is measured as the proportion of individuals in the test set who experience

individual resentment, as defined in Section 3.4. Specifically,

• Resentment: 1
N

∑N
i=1 max

j∈Ni

(
1ŷi<ŷj

)
where Ni is the set of j 6= i ∈ {1 . . . N} where Xi is “better” than Xj or

Xi = Xj and Ai 6= Aj. In practice, since none of the methods use the protected

attribute as an input, this is equivalent to the number of individuals who

experience non-protected attribute (score) resentment, i.e. they had a higher

attribute in a monotonically non-decreasing dimension (or a lower one in a non-

increasing dimension) than a hypothetical individual with a more favorable

prediction (and identical non-protected attributes).

Due to the high dimensionality of some of the datasets, we restricted

our consideration of resentment to individuals who feel resentment towards a

peer in the test set, rather than resentment towards a hypothetical individual

with worse scores. Note that, as the dimension of the attribute space increases,

the sample estimate will underestimate resentment, due to a decreasing num-

ber of individuals with comparable attributes. For example, in the law school

admissions setting, it is easy for an individual to find peers with lower UGPA
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but the same LSAT scores; conversely, for the German credit data, a compa-

rable individual must match on 51 attributes. However, the resentment of the

monotonic neural network will always be zero by design.

Let us explore the Law school dataset in more detail. Figure 3.3 shows

the comparative distributions of males and females w.r.t. GPA and LSAT

score. Note that the female distribution is shifted towards higher UGPA and

lower LSAT score than the male distribution. In Figure 3.5, we see the ad-

missions probabilities produced by the monotonic and non-monotonic neural

networks. When α is high, we see that individuals would often do well to lower

their reported LSAT score in order to increase their probability of admission.

This is an artifact of the disproportionate number of women with high UGPA

and low LSAT scores, resulting in a “fair” classifier which favors lower LSAT

scores for individuals high UGPA, similar to the example in Figure 3.1. Even

though there is no resentment across protected variable groups, there clearly

would be resentment by those who are less likely to receive a favorable outcome

due to a counter-intuitive admissions policy designed to produce demographic

balance.

3.6.3.1 Lipschitz constant

Although our method is not primarily intended to produce a smoother

function, i.e. one with a lower Lipschitz constant, it is a desirable property

for individually-fair functions. Zhang et al. Zhang et al. (2019) provide a

discussion of the advantages and disadvantages of several types of empirical

estimators of the Lipschitz constant for a neural network.

We adopt a sample-based estimator similar to that of Wood and Zhang
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(1996), which uses a pairwise evaluation of the constant,8 i.e.

L̂ = max
i,j

(∣∣∣∣∣ Ŷi − Ŷjd(Xi, Xj)

∣∣∣∣∣
)

We calculate our Lipschitz constant with respect to a standardized

Euclidean distance,

d(Xi, Xj) =

√√√√∑
k

(
Xk
i −Xk

j

ŝk

)2

where ŝk is the sample standard deviation of Xk. We standardize in

this manner so smoothness is comparable across dimensions. As discussed in

Zhang et al. (2019), this sample estimate is a lower bound of the true constant,

but we feel it is adequate for model comparison.

In Figure 3.6, we see that the monotonic neural network tends to pro-

duce smoother solutions for a given value of discrimination than other methods

in more inherently-monotonic settings like the Law School dataset than in less

inherently-monotonic settings like COMPAS or German Credit. This is un-

surprising, since the monotonicity constraint acts as a regularizer, preventing

overfitting to spurious non-monotonic trends in sampled data.

3.7 Discussion

Individually fair classifiers can exhibit unfair behavior on a population

level, and can lead to the undesirable situation where an individual who per-

formed worse on a given metric would have had a better outcome, leading to

8The method proposed by Wood and Zhang (1996) further fits estimates a parametric

distribution of the values to find an estimate of the maximum, but that method requires a

random sample of points which is infeasible here. We instead use the maximum of empirical

distribution, which is biased downwards but adequate for comparison purposes.
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resentment. We show that a definition of individual fairness that incorporates

monotonicity can avoid the latter situation, and can be combined with mea-

sures of demographic fairness to yield classifiers that trade off predictive power

with demographic fairness.

Several recent works suggest important future directions.

Estimation of monotonic relationships: A critical requirement of indi-

vidual fairness as originally proposed Dwork et al. (2012) is a distance metric

over X to determine the degree of similarity between individuals. Our work

sidesteps the problem by relaxing the requirement from a distance metric to a

concept of ordering. Recent concurrent works Jung et al. (2019); Ilvento (2019)

have explored the concept of estimating a distance metric by polling fair ex-

perts on what constitutes similarity. We can similarly imagine extending the

current work by polling fair experts instead on which individuals should receive

higher outcomes than others, and enforcing coherence between the trained pre-

diction function and the poll results on orderings. This would allow one to

relax the requirement of explicitly monotonic dimensions in the input data.

Post hoc adjustment for monotonicity: Recent works, e.g. Lohia et al.

(2019), have attempted to use post hoc adjustments and model pooling pre-

vent biases in machine learning. These methods approach machine learning

methods as black box function estimators, and instead of modifying the input

data or function space of the models, use post hoc adjustment of the trained

models’ predictions in order to create fairness. It is reasonable to consider

whether we can extend this general applicability to the current approach; if

we have a classifier which satisfies other concepts of fairness and accuracy, we

may be able to manipulate its outputs to induce monotonicity on their outputs

without interfering in the “black box.”
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Figure 3.1: The distribution of X for the minority class (light green, X|A =

0 ∼ N(0, 1)) differs from that of the majority class (light blue, X|A =

1 ∼ N(0, 3)). We have P (A = 1) = 0.6. For both classes, Y = X + ε,

ε N(µ = 0, σ = 0.1) – i.e. the chance of success increases with X. ”Unfair”

(yellow solid line) is an unconstrained neural network soft classifier which max-

imizes expected outcome score of positive predictions subject to a constraint

on expected number of positive predictions. ”Fair” (red dashed line) adds the

restriction that we must have equal expected probability of positive prediction

for both classes. ”Mono. Fair” (dark blue dash-dot line) adds the further

constraint that the prediction function must be monotonic.)
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Figure 3.2: Training data (yellow circles, n = 1000 for each), monotonic neu-

ral network (dashed blue line), and non-monotonic neural network with trans-

formed weights after the first layer (solid red line) approximations for training

data sampled from four example functions.
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Figure 3.3: Distribution over UGPA and LSAT for male and female students.

Female students tend to have higher GPA, but lower LSAT scores.
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Figure 3.4: Accuracy vs Discrimination (top row) and Discrimination vs. Re-

sentment (bottom row) across models and datasets. Yellow triangles are FNN,

red circles are FMNN, blue stars are FR.
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Figure 3.5: Plots of fitted solution for law school admissions data across range

of α (fairness) levels, with unfairest left and fairest right. Top row: Monoton-

ically fair classifier. Bottom row: Classifier with no monotonicity constraint.

Lighter color indicates higher value.

Figure 3.6: Lipschitz constant estimate vs. discrimination across models and

datasets. Yellow triangles are FNN, red circles are FMNN, blue stars are FR.
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Chapter 4

Elicited Monotonic Fairness

4.1 Overview

The monotonicity constraint discussed in Chapter 3 ensures that the

outcome has a monotonic relationship with individual attributes conditioned

on the other attributes. In practice, however, we often wish to capture more

complex definitions of “better” attribute sets that consider multiple attributes

at once. For instance, consider the situation where two defendants are oth-

erwise identical except that the first has committed ten more felonies and

the second has committed one more misdemeanor; clearly, the first should be

ranked as more likely to re-offend, but the two are incomparable according

to these strict monotonicity rules. In addition, such strict interpretation of

monotonicity prevents comparison between individuals with non-identical co-

variates on non-monotonic axes, i.e. when the condition of otherwise identical

attributes doesn’t hold. For example, if two defendants are 30 and 31 years

old, they are incomparable.

More complex concepts of monotonicity are difficult to capture a priori.

In this work, we explore the process of collecting and incorporating impartial

arbiter information to ensure that individuals with commonly-accepted “bet-

ter” attributes will receive favorable outcomes while maintaining predictive

power. We do so by defining a loss function which depends only on the joint

outcome of pairs so that arbiter comparisons can be combined with observed

pairs of outcomes. We operate in a conditional setting so that fairness and

accuracy can be balanced post hoc as desired. We also provide a means to

incorporate group-level fairness to augment our individual-level protections.
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This section explores a methodology for eliciting such non-axial mono-

tonicity based on surveying arbiters, which may or may not be fair in their

judgments, and using those responses to regularize a classifier. The input of

the arbiters is motivated as preventing intuitive resentment.

4.2 Introduction

We wish to extend the concept of non-protected attribute resentment

(Def. 3.4.2) to widen the comparisons which can be made when defining what

is a “better” Xu.

At its core, the problem to be addressed is that an individual will have

resentment toward others if the individual feels the others received better

treatment despite not being as deserving. Modeling each individual’s views

on relative treatment would be undesirable since we would like a rule which

applies evenly to all individuals; we instead aim to learn a ranking function

over individuals which can be used universally.

We propose to learn such a function by querying a set of arbiters by

presenting pairs of non-protected attribute sets and asking for a judgment

as to what the fair relative treatment of the pair would be. Once collected,

these samples can be used to learn a preference function over pairs of non-

protected attributes that captures the arbiters’ notion of monotonic fairness.

Similarly, we can use the rankings implied by the data to learn a similar

function that captures ground truth. We learn these two functions jointly,

in a conditional setting. The idea is that learning the two functions jointly

will act as a regularizer on the model learned on ground truth data, pulling

it towards the arbiter’s orderings, and (by changing the conditional variable

at prediction time) we can extrapolate between a more accurate prediction of

ground truth, and a more faithful representation of the arbiters’ orderings.

This is not the first work to incorporate the idea of utilizing arbiter

queries in the area of fairness. The original definition of individual fairness

given by Dwork et al. (2012) requires specifying a distance metric over at-

tributes which can bound the difference in treatment, i.e. D (f(Xi), f(Xj)) ≤
κd(Xi, Xj). Ilvento (2019) and other recent works (Jung et al., 2019; Lahoti
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et al., 2019; Wang et al., 2019) approach the problem of operationalizing an

individual fairness distance metric by polling arbiters on which pairs of indi-

viduals can be considered similar. Wang et al. (2019) similarly collect actual

survey data and evaluate a variety of models to interpret such data. None

of these approaches tackle the problem of dissimilar treatment, i.e. when an

arbiter decides that two individuals should receive different predictions, espe-

cially the asymmetric case when arbiters indicate that one individual should

receive a specifically more favorable or less favorable outcome than the other.

Models which are designed to identify the relative values of pairs can

be classified as preference learning models (Peters et al., 2018). The problem

of preference learning centers around the paradox that individuals with strong

preferences are often unable to systematize those preferences in useful way

(Lichtenstein and Slovic, 2006). A variety of methods have been proposed,

including several Bayesian approaches (Peters et al., 2018; Guo et al., 2010)

and neural network models (Duman et al., 2019; Khannoussi et al., 2019) which

propose methods of active preference elicitation. This work does not elaborate

on the process of preference elicitation, i.e. the optimization of queries for

information gain, but instead focuses the incorporation of a preference function

in resentment prevention and fairness.

4.3 Model

First, we define out variables closely to those in Chapter 3. We assume

(X,A) ∈ D ⊂ Ω with corresponding binary output Y . Let Xobs, Y obs, and

Aobs be the non-protected attributes, observed binary outcomes ∈ {0, 1}, and

protected attributes for some set of n individuals. We assume an arbiter that

we can query with pairs Xi, Xj (or (Xi, Ai), (Xj, Aj)) and return an outcome

Zarb
ij ∈ {1, 2, 3, 4}, where the arbiters return 1 if it expects f(Xi) > f(Xj), 2 if

it expects f(Xj) > f(Xi), 3 if it expects f(Xi) and f(Xj) to be similar, and

4 if it has no expectations as to the relative predictions. We will generally

refer to those Zarb
ij ∈ {1, 2} as dissimilar ratings and those pairs Zarb

ij ∈ {3} as

similar ratings.

We introduce an auxiliary variable Zobs
ij which captures relationships of
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Yi, Yj in the observed data with parallel meaning:

Zobs
ij =


1 if Y obs

i = 1 and Y obs
j = 0

2 if Y obs
i = 0 and Y obs

j = 1
3 if Y obs

i = Y obs
j

.

The crux of this model is moving from optimizing for the direct pre-

diction of outcomes encompassed by Y to optimizing the relative outcomes

encompassed by Z. When we survey our fairness arbiters, we ask them to

evaluate whether one individual is more likely (Z = 1), less likely (Z = 2), or

similarly likely (Z = 3) than another specific individual to have Y = 1.

We can then define a single loss function which incorporates both data

sources:

LZ(Z, p̂,Z) =
∑

(i,j)∈Z

 1Zij=1 log (p̂i(1− p̂j)) +
1Zij=2 log ((1− p̂i)p̂j) +
1Zij=3 log (p̂ip̂j + (1− p̂i)(1− p̂j))

 ,

letting Z denote a set of pairs (i, j) of size |Z| indexing over the provided p̂.

In the above loss, the components for dissimilar outcomes can be re-

duced to the traditional log loss of the observed outcomes, i.e. if Y obs
i = 1 and

Y arb
j then log (p̂i(1− p̂j)) = log (p̂i)+log (1− p̂j) is just the usual cross entropy

loss. For the case that Zij = 3, the loss component can be viewed as pushing

p̂i and - p̂j to take similar values; (d (p̂ip̂j + (1− p̂i)(1− p̂j)) /dp̂i|p̂j = 2p̂j − 1,

so that p̂j is driven towards 0 if p̂j < 1/2 and towards 1 if p̂j > 1/2. This is

symmetric, so that if both estimates are pushed towards the same pole, with

an unstable equilibrium if both are 1/2.

As mentioned above, we augment the neural network input with c,

which acts as a conditional variable which is set to c = 0 when we wish

to predict according to the observed data without concern for agreement with

intuitive resentment, and which is set c = 1 when we wish to predict according

to our arbiter data (and possibly a group fairness constraint) without concern

for predictive accuracy according to the observed data. This design allows us

to tune the prediction function continuously between being based entirely on

real data without concern for agreeing with intuitive resentment and being

based entirely on the arbiter data at the expense of predictive accuracy.
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We can further add other losses to the prediction task when c = 1, e.g.

a differentiable loss on a variant of group fairness like equality of outcome,

odds, or opportunity. We assess this only on the predictions when c = 1 since

that conditional setting corresponds to the “fair” setting; this effect of this

loss can then also be balanced by setting c ∈ (0, 1).

4.4 Experiments

We demonstrate the use of the above pairwise loss on two datasets.

First, in Section 4.4.1 we consider a synthetic experiment without protected

attributes where the true probability Pr(Yi = 1|Xi) is known and we attempt

to recover that probability using a simple feedforward neural network, as de-

scribed in Sections 1.2.4 and 3.6, trained to minimize 4.3.

Second, in Section 4.4.2 we consider the COMPAS dataset, and utilize

human survey responses and attempt to learn a network with a conditional

prediction structure which allows for post-hoc compromise between fairness

loss and prediction accuracy.

4.4.1 Synthetic - Proof of balancing objectives

We begin with a synthetic experiment where the ground truth is known.

We have an individual set of attributes Xi ∼ N(0, 1)2, and two weight vectors,

βobs = [0.9, 1.1] and βarb = [1.1, 0.9], which describe the relationship between X

and, respectively, Zobs
ij (via Y obs

i ) and Zarb
ij . We set P obs

i = 1/(1+exp{−Xiβ
obs−

1}), sample Yi ∼ Bernoulli(P obs
i ), and set Zobs

ij as defined as above. We set

Zarb
ij according to:

Zarb
ij =


1 if Xiβ

arb > Xjβ
arb + 0.25

2 if Xjβ
arb > Xiβ

arb + 0.25
3 if |Xiβ

arb −Xjβ
arb| < 0.25

.

We sample 1,000 training examples of Zobs
ij and 200 examples of Zarb

ij , and

evaluate losses on the same number of identically distributed held out samples.

We trained using a small neural network of three hidden layers of width three
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and a tanh activation function. We optimize for a compound loss,

L = LZ

(
Zobs
ij , p̂i = f(Xi, c = 0),O

)︸ ︷︷ ︸
Lobs
Z

+LZ

(
Zarb
ij , p̂i = f(Xi, c = 1),A

)︸ ︷︷ ︸
Larb
Z

+g(θ)

where O is the set (or a subset) of pairs of observations, A is the set of arbiter-

assessed pairs, and g(θ) is a regularization term on the parameters of the

network. We arbitrarily set g(θ) = 0.01 ∗ (||θ||1 + ||θ||22) to provide weak reg-

ularization of the network.

First, we wish to establish that the pairwise loss defined above can be

used to estimate the probability function underlying probability function when

c = 0 i.e. when attempting to predict based purely on the observed outcomes

via the Zij pairs. In Figure 4.1, we show experimentally that P̂i is accurate to

within the limit of sampling error and (intentional) model misspecification.

Second, we wish to assess whether the model is able to interpolate

via c between it’s dual goals of predicting Ŷi while adhering to the surveyed

Zarb
ij pairs. The trend of Zarb

ij is exactly as expected; lowest when c = 0

and gradually increasing to a maximum when c = 1. The behavior of Zarb
ij

is less intuitive; it is highest when c = 0, but many random fits have an

local minimum loss with c < 1. This is explained by the relatively small

sample (narb = 200) leading to overfitting even in this modest network, and

by Lobs
Z providing regularization which improves out-of-sample performance.

We also, when examining the joint loss values available, that the models fits

form appropriate trade off functions for performance, with reduction of one

loss coming at the cost of increase of the other.

4.4.2 COMPAS

We augment the COMPAS dataset described in Section 3.6 in two ways:

we add a feature for whether the current charge is violent, and we collect survey

data to on random pairs and the possible ordering of their outcomes.

First, in adding the feature for violence of the current charge, we used

the classification system described by ProPublica (Larson et al., 2016) and
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Figure 4.1: The model estimated probability of Pr(Yi = 1|Xi, c = 0) versus

the ground truth probabilities, with 1:1 line.
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Figure 4.2: Model losses as a function of conditional variable (c) setting over

5 experiments with random initializations. Left: losses as a function of c, with

Lobs
Z in blue and Larb

Z in red. Right: parametric plot of Larb
Z as a function of

Lobs
Z .

based on the US Department of Justice’s definition of a violent crime: “mur-

der and nonnegligent manslaughter, forcible rape, robbery, and aggravated as-

sault.” With this feature added, the non-protected attributes are age, (adult)

priors count, juvenile prior felony count, juvenile prior misdemeanor count,

juvenile prior other counts, arrest charge degree (felony or misdemeanor), and

whether the arrest charge is violent. The protected attributes are race, classi-

fied as Caucasian, African American, or Other (comprising what the dataset

labels as Other, Hispanic, Native American, and Asian), and Sex, classified as

Male or Female.

The second augmentation was made by survey. Five volunteers were

each presented 100 independent random pairings of non-protected attributes,

i.e. excluding the protected attributes of race and sex. For each pairing,

the two individuals were labeled “Individual A” and “Individual B”, and the

arbiter asked to provide one of four ratings:

• “A is at least as likely to (re)offend” (Z = 1)

• “B is at least as likely to (re)offend” (Z = 2)
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• “A and B are similarly likely to (re)offend” (Z = 3)

• “No preference / any of the others are fair” (Discarded)

The full survey instructions are presented in the appendix.

Seventeen responses indicating no preference were discarded, leaving

298 dissimilar responses (Z ∈ {1, 2}) and 185 similar responses (Z = 3).

We make no claim that the arbiters we surveyed have any qualification

as unbiased judges; in the current setting where we do not provide protected

attributes, the role of these arbiters is not to provide protected attribute-

aware judgments. Instead, they are intended to provide feedback on what

conditions they would find unfair via the individuals who should be more (or

less) likely to get bail than others. This doesn’t require expert knowledge

because resentment occurs at an individual, non-expert level.

For group fairness loss, we chose to evaluate equality of odds, which

requires that the prediction is independent of the protected attributes condi-

tioned on the true outcome, i.e.

Pr(Ŷ = 1|A = a, Y = y) = Pr(Ŷ = 1|A = a′, Y = y)∀a, a′, y.

We express this is a differentiable loss as

LF =
∑
y

∑
a

(
¯̂yay − ¯̂y·y

)2
where ¯̂yay =

∑
i:Ai=a,Yi=y

(Ŷi)/nay, i.e. the average prediction individuals of

each protected attribute set and true outcome, and ¯̂y·y =
∑

i:Yi=y
(Ŷi)/n·y, i.e.

the average prediction for all individuals of that true outcome. Note that,

as described above, we will always assess LF using estimates ŷ conditioned

on c = 1, i.e. in the conditional setting where we care about fairness, both

individual and group.

We then set our training loss, using the notation from the synthetic
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experiment above, as

L = LZ

(
Zobs
ij , f(Xi, c = 0)

)︸ ︷︷ ︸
Lobs
Z

+LZ

(
Zarb
ij , f(Xi, c = 1)

)︸ ︷︷ ︸
Larb
Z

+λF
∑

y∈{0,1}

∑
a∈A

(
¯̂yay − ¯̂y·y|c = 1

)2
︸ ︷︷ ︸

LF

+g(θ)

where λF is a parameter to weight LF relative to Larb
Z .

Due to the increased data set size and complexity, we use a larger

network in this problem with 4 hidden layers each of size 10. As long as we

assume that axial monotonicity as discussed in Chapter 3 applies, we can train

the present network using either a traditional feedforward neural network or

the monotonic neural previously discussed; we present results from only the

former to limit uncontrolled factors.

In Figure 4.3, we examine experimental results. Similar to our synthetic

experiment, the pairwise loss on observed data Lobs
Z is lowest when c = 0 and

increases steadily toward c = 1. The fairness loss LF has a similar but opposite

trend, and has an expected tradeoff curve with Lobs
Z

An interesting anomaly, however, is the trend for the pairwise loss

on arbiter data Larb
Z (top right), which is highest at c = 1 when we would

naively expect it to be lowest. Counterintuitively, this is explained by the

fact that the arbiter ratings, which are assumed to be fair w.r.t. resentment

but are in fact severely biased w.r.t group fairness. For instance, despite

being unaware of race, arbiters’ views on relative treatment led them to rate

the non-protected attributes of African-Americans as more likely to re-offend

than those of Caucasians on average; in the 105 ratings where they gave a

dissimilar rating for an African-American and Caucasian pairing, they rated

the African American defendant’s non-protected attributes as more likely to

re-offend 68 times (65%). The result of this contradiction in arbiter-based

individual fairness and group fairness is predictable: one of them dominates

when c = 1, and in this case it is group fairness, likely due to loss scaling.

Another factor causing Larb
Z to be lower towards c = 0: the arbiters

are actually fairly accurate. Of the 164 dissimilar ratings given, 128 ratings
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Figure 4.3: Clockwise from top left: Pairwise loss on observed data Lobs
Z as a

function of c, pairwise loss on arbiter data Larb
Z as a function of c, group fairness

loss LF as a function of c, and Lobs
Z as a function of group fairness loss LF .

Lines represent three random training runs with λf = 0.001. Marker size is

proportionate to c. Different lines are fits from different random initializations.
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(78%) were directionally correct, which is comparable accuracy to a roughly

three point difference on the COMPAS decile score system, despite COMPAS

having access to additional attributes (both protected and other) that we

didn’t reveal to the arbiters. We hypothesize that the relatively high accuracy

of arbiter ratings allows them to act as additional information for training the

structure of the classifier, improving the accuracy when c = 0 (and c near 0),

even if no loss considers the accuracy of arbiter ratings when c = 0.

4.5 Discussion

The ability to incorporate preference learning into fairness models al-

lows us to prevent individual resentment without a priori knowledge of what

treatments would cause resentment. Such a priori knowledge is often hard to

come by, requiring expert knowledge and a well structured problem. When

such knowledge is available, it can still be difficult to systematize that a priori

knowledge into a method for exact comparisons. We have shown a method for

eliciting data informative of that a priori knowledge from arbiters via surveys,

incorporating that data into a statistical model of preferences, and provid-

ing a post hoc-tunable prediction function which respects that arbiter input

and, hopefully, prevents individuals treated by the system from experiencing

individual resentment.

The current work opens future research questions as well. While there

are many methods available for preference function learning, they have not

been widely integrated into the fairness literature. Integration of preference

learning, and especially direct inference of the arbiter preference resulting in

a well defined preference function, would open opportunities for an improved

system with better guarantees. Although we have a loss function which can

direct balance the observed and arbiter-provided data, we have not shown

an easily-tuned system for incorporating more commonly used group fairness

metrics. In addition, the current work is focused on neural networks and

controlling violations of arbiter-provided ratings by loss penalization; it would

be desirable to provide the hard guarantees non-resentment that is available

for axial monotonicity.
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Chapter 5

Conclusion

In this work, we have examined relational learning in two modes: per-

forming inference on the individuals on the network, and designing systems

that are fair for those individuals.

In Chapter 2, we explored how to infer user communities based on the

content and volume of their communications. This allows us to make inference

about unseen relationships and messages, as well as to make inference about

the larger organization represented in the network.

We conceptualized in Chapter 3 the resentment that individuals can

experience when their relative treatment seems “unfair” relative to the treat-

ment of other individuals, and explored how existing techniques for monotonic

function learning can be used to avert such resentment.

Since such resentment can happen in more complex ways than mono-

tonic functions can capture, we expanded the concept in Chapter 4 to use a

system of arbiter ratings to learn a preference function over individuals’ at-

tributes so that a system can prevent resentment relative to concepts of quality

which are difficult to directly specify.
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Appendix A

Appendix: Monotonic Fairness Supplement

In this supplement, we provide justification for our design choices for

the neural network architecture, and demonstrate that such an architecture is

able to capture monotonic functions, and impose monotonicity even when the

true generating function is non-monotone.

A.1 Design choices

Below, we discuss several design choices, and their effect on the resulting

functions.

Transformation Matters: The choice of transformation function in Equa-

tion 4 can have a significant effect on the probability of successful convergence

of monotonic neural networks. We show in Figure A.1 that the choice of

transformation can have different effects based on the nature of the under-

lying function, and affects both monotonic and non-monotonic fitting. We

consider four non-linearities:

• Square: τ(x) = x2.

• Abs: τ(x) = |x|.

• Offset exponential linear unit (elumod):

τ(x) =

{
x if x > 1
ex−1 if x ≤ 1

• Softplus: τ(x) = log(1 + ex)
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Figure A.1: Convergence rates for various functions used to enforce positive

weights. The vertical exist for the middle and right columns is the proportion

of random initialization which converge to a non-deviant (ŷ = ȳ) solution.

We choose to use an offset exponential linear unit in our experiments, since it

achieved optimal or near-optimal convergence in these comparisons.

Activation Matters: Additional caution is needed in selecting an activation

function for a monotonic neural network. If, for instance, a convex activation

function is used (e.g. elu or relu), subsequent layers can only compound this

convexity, and the resulting function can only be convex. It is easy to see

this by considering the compounding of the first and second derivative across

the layers. This may be a desirable feature in some settings, but generally

prohibits it from approximating any monotonic function. As such, bounded

(but monotonic) activation functions like logistic or tanh are advisable for
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general purposes.

A.2 Ability to Capture Mixed Monotonicity

We wish to emphasize that the network architecture described in this

paper can simultaneously handle monotonic and non-monotonic relationships

between the inputs and output. If we begin with the assumption that a net-

work constrained to positive weights will produce a monotonically increasing

function f(x), we can briefly intuit the ability to fit a monotonically decreasing

function by considering that f(−x) would produce an identical function f(x)

but with reversed domain and therefore would be monotonically decreasing.

Equivalently, we can enforce negativity on the weights in the network on edges

leading out from any x with respect to which f(x) is monotonically decreas-

ing, i.e. set w̃ < 0 in the connection between x and the first hidden layer (but

keeping all weights in subsequent layers positive to maintain direction).

Further, if we accept that we can fit monotonically increasing and de-

creasing functions by constraining the weights, then consider what would hap-

pen if we fit f(x, x), i.e. fed the same input twice, but constrained the first

to be increasing and the second to be decreasing. By the argument of decom-

posing functions into positive and negative parts (or, here, decomposing the

first derivative into positive and negative parts), we can construct a mono-

tonic function from its increasing and decreasing parts. Further, each node in

the first hidden layer would compute as σ(w̃+x + w̃−x + c), which could be

simplified as σ(wx+ c) where w is unconstrained.

To demonstrate the result empirically, we show in Figure A.2 a two-

dimensional experiment in which the true underlying function is non-monotonic

w.r.t to x1 but strictly monotonically increasing w.r.t. x2. Specifically,

f(x1, x2) = sin(πx1) + max(−1,min(1, x2))

The estimated function shown is fit on a sample of 1,000 samples from

the function and set to be non-monotonic w.r.t. x1 and monotonic w.r.t x2
and is able to recover the true function with reasonable precision.
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Figure A.2: Demonstration of our network architecture’s ability to fit a func-

tion which is monotonic in one dimension and non-monotonic in another.

Similarly, we show in Figure A.3 that a mixed-monotonicity function

can be fit even if the underlying function is severely non-monotonic (with the

expected error in fit). Here, f(x1, x2) = x20 + x21, and we again fit on a sample

of 1,000 samples from the function and set to be non-monotonic w.r.t. x1 and

monotonic w.r.t x2. As expected, it finds a function which is optimal subject

to the (incorrect) constraints.
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Figure A.3: Demonstration of our network architecture’s ability to created a

function which is monotonic in one dimension and non-monotonic in another,

even when the data does not meet those qualifications.
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Appendix B

Appendix: COMPAS arbiter survey design

This supplement will discuss the collection of arbiter survey data as

used in Section 4.4.

Arbiters were not collected at random, but volunteers known to the

researchers. They were given the following instructions, presented with 100

pairs of randomly drawn individuals from the COMPASLarson et al. (2016)

dataset, and asked to give one of four ratings in the form pictured in Figure

B.1. The following is the verbatim survey text given to volunteers.

DISCLAIMER: The survey below is ENTIRELY OPTIONAL and

YOU CAN STOP AT ANYTIME. Your answers are anonymous

and will be combined in aggregate with others. Your unaggregated

answers will not be shared with anyone other than myself, and I

will keep no record of who provided which answers.

Your answers to this survey WILL NOT be used in any actual crim-

inal proceedings (but please answer thoughtfully and honestly).

BACKGROUND: Being granted bail allows an individual to leave

jail between being arrested and facing prosecution; the individ-

uals being considered have only been accused of an offense, not

convicted, when their bail is set.

Judges in the U.S. must assess whether an individual is likely to

commit a crime if released on bail. Some judges rely on computer
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Figure B.1: Survey form used to collect arbiter ratings.

models of past data to supplement their own intuitions and expe-

rience in making this determination. These computer models have

come under scrutiny for how ”fair” their predictions are.

The goal of this survey is to produce some example data on human

judgments of what predictions would be ”fair.” You’ll be presented

with a set of factors about two real defendants and asked to make

a judgment about the what relative predictions would be ”fair” for

those individuals.

The variables you are presented describe: - Age: what is the age of

the person at time of setting bail (not age at time of alleged offense)

- Prior Adult Convictions: how many prior crimes has the individ-

ual been convicted of as an adult - Prior Juvenile Felonies: How

many felonies were they convicted of as juveniles. - Prior Juvenile
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Misdemeanors: How many misdemeanors were they convicted of

as juveniles. - Prior Juvenile Other: How many other offenses, not

counted as felonies or misdemeanors, were they convicted of as ju-

veniles. - Charge Degree: Either Felony or Misdemeanor. Felonies

are considered more serious crimes and can carry longer prison sen-

tences and higher fines. - Is Violent Offense: We have categorized

the charged offenses as being Violent or Non-Violent based on the

FBI’s uniform crime reporting (UCR) standard: ”violent crime is

composed of four offenses: murder and nonnegligent manslaughter,

forcible rape, robbery, and aggravated assault. Violent crimes are

defined in the UCR Program as those offenses which involve force

or threat of force.

For each individual, please select 1 of 4 opinions from the high-

lighted drop down list: - ”A and B are similarly likely to (re)offend”-

You believe that Individuals A and B should have similar predicted

likelihood to commit an offense while on bail. - ”A is at least as

likely to (re)offend” - You believe that Individual A can’t fairly be

predicted to have a lower chance of committing an offense while

on bail. - ”B is at least as likely to (re)offend” - You believe that

Individual B can’t fairly be predicted to have a lower chance of

committing an offense while on bail. - ”No preference / any of the

others are fair” - It wouldn’t be unfair if either individual had a

higher, lower, or similar prediction to the other.
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