366 research outputs found

    ParaPlan: A Tool for Parallel Reachability Analysis of Planar Polygonal Differential Inclusion Systems

    Get PDF
    Andrei Sandler, and Olga Tveretina, ‘ParaPlan: A Tool for Parallel Reachability Analysis of Planar Polygonal Differential Inclusion Systems’, in Patricia Bouyer, Andrea Orlandini and Pierluigi San Pietro, eds. Proceedings Eight International Symposium on Games, Automata, Logics and Formal Verification (GandALF 2017), Rome, Italy, 20-22 September 2017, Electronic Proceedings in Theoretical Computer Science, Vol. 256: 283-296, September 2017. © 2017 The Author(s). This work is licensed under the Creative Commons Attribution License CC BY 4.0 https://creativecommons.org/licenses/by/4.0/We present the ParaPlan tool which provides the reachability analysis of planar hybrid systems defined by differential inclusions (SPDI). It uses the parallelized and optimized version of the algorithm underlying the SPeeDI tool. The performance comparison demonstrates the speed-up of up to 83 times with respect to the sequential implementation on various benchmarks. Some of the benchmarks we used are randomly generated with the novel approach based on the partitioning of the plane with Voronoi diagrams

    ATLsc with partial observation

    Full text link
    Alternating-time temporal logic with strategy contexts (ATLsc) is a powerful formalism for expressing properties of multi-agent systems: it extends CTL with strategy quantifiers, offering a convenient way of expressing both collaboration and antagonism between several agents. Incomplete observation of the state space is a desirable feature in such a framework, but it quickly leads to undecidable verification problems. In this paper, we prove that uniform incomplete observation (where all players have the same observation) preserves decidability of the model-checking problem, even for very expressive logics such as ATLsc.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    A SAT-Based Encoding of the One-Pass and Tree-Shaped Tableau System for LTL

    Get PDF
    A new one-pass and tree-shaped tableau system for LTL sat- isfiability checking has been recently proposed, where each branch can be explored independently from others and, furthermore, directly cor- responds to a potential model of the formula. Despite its simplicity, it proved itself to be effective in practice. In this paper, we provide a SAT-based encoding of such a tableau system, based on the technique of bounded satisfiability checking. Starting with a single-node tableau, i.e., depth k of the tree-shaped tableau equal to zero, we proceed in an incremental fashion. At each iteration, the tableau rules are encoded in a Boolean formula, representing all branches of the tableau up to the current depth k. A typical downside of such bounded techniques is the effort needed to understand when to stop incrementing the bound, to guarantee the completeness of the procedure. In contrast, termination and completeness of the proposed algorithm is guaranteed without com- puting any upper bound to the length of candidate models, thanks to the Boolean encoding of the PRUNE rule of the original tableau system. We conclude the paper by describing a tool that implements our procedure, and comparing its performance with other state-of-the-art LTL solvers

    The Almost Equivalence by Asymptotic Probabilities for Regular Languages and Its Computational Complexities

    Full text link
    We introduce p-equivalence by asymptotic probabilities, which is a weak almost-equivalence based on zero-one laws in finite model theory. In this paper, we consider the computational complexities of p-equivalence problems for regular languages and provide the following details. First, we give an robustness of p-equivalence and a logical characterization for p-equivalence. The characterization is useful to generate some algorithms for p-equivalence problems by coupling with standard results from descriptive complexity. Second, we give the computational complexities for the p-equivalence problems by the logical characterization. The computational complexities are the same as for the (fully) equivalence problems. Finally, we apply the proofs for p-equivalence to some generalized equivalences.Comment: In Proceedings GandALF 2016, arXiv:1609.0364
    • …
    corecore