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Abstract. Recently, a new one-pass and tree-shaped tableau system for
LTL satisfiability checking has been proposed, with the distinguishing
features of (i) being really tree-shaped, in contrast to previous graph-
shaped tableau methods, and (ii) requiring only one pass to either accept
or reject a branch of the tableau. Despite its simplicity, it proved itself to
be effective in practice. In this paper, we provide a SAT-based encoding
of such a tableau system, based on the technique of bounded satisfiability
checking. Starting with a single-node tableau, i.e., depth k of the tree-
shaped tableau equal to zero, we proceed in an incremental fashion.
At each iteration, the tableau rules are encoded in a Boolean formula,
representing all branches of the tableau up to the current depth k. A
typical downside of such bounded techniques is the effort needed to
understand when to stop incrementing the bound, to guarantee the
completeness of the procedure. In contrast, termination and completeness
of the proposed algorithm is guaranteed without computing any upper
bound to the length of candidate models, thanks to the Boolean encoding
of the PRUNE rule of the original tableau system. We conclude the paper
by describing a tool that implements our procedure, and comparing its
performance with other state-of-the-art LTL solvers.

Keywords: tableau system · temporal logic · satisfiability · SAT.

1 Introduction

Linear Temporal Logic (LTL) is one of the most used temporal logics in formal
verification. In this context, the main problem is model checking [9], i.e., deciding
whether a given specification is satisfied by a given system. However, testing
a system against a valid or unsatisfiable formula can be useless at best, and
dangerous at worst, and thus sanity checking of specifications is an important
step in model-based design [27]. For this reason, the satisfiability problem, i.e.,
establishing whether a formula admits any model in the first place, has been given
an important amount of research effort. In addition to its application to formal
verification, it also plays a role in AI systems [16,20], e.g., in planning problems.

Besides their relevance in applications, decidability and complexity of the
satisfiability problem are always among the first issues to answer about a logic.
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Since the first computational complexity results [25], many techniques have
been devised over the last decades, with tableau methods being among the first
methods to be developed [18,19,24]. In contrast to earlier tableau methods for
classical logic [4, 10], that work by building a suitable derivation tree, most of
these methods build a graph structure, whose paths represent possible evolutions
of the computation, and then look for those ones that satisfy all the properties
required by the formula. Recently, a tree-shaped tableau for LTL has been proposed
by Reynolds [22], which only requires a single pass to decide whether a given
branch has to be accepted or not. The smaller size of the tree with regards
to the full graph structure of previous methods, and its simple rule-based tree
search mechanism, led to an efficient implementation [3], a simple and fruitful
parallelization [21], and modular extensions to more expressive logics [13,14].

In this paper, we propose a satisfiability checking procedure for LTL formulae
based on a SAT encoding of the one-pass and tree-shaped tableau by Reynolds [22].
The tableau tree is (symbolically) built in a breadth-first way, by means of Boolean
formulae that encode all the tableau branches up to a given depth k, which is
increased at every step. The expansion rules of the tableau system are encoded
in the formulae in such a way that a successful assignment represents a branch of
the tree of length k, which in turn represents a model for the original LTL formula.
This breadth-first iterative deepening approach has been exploited in the past
by bounded satisfiability checking and bounded model checking algorithms [7, 15],
which share with us the advantage of leveraging the great progress of SAT solvers
in the last decades, and the incrementality of such solvers.

A common drawback of existing bounded satisfiability checking methods is
the difficulty in identifying when to stop the search in the case of unsatisfiable
formulae. In order to ensure termination, either a global upper bound has to
be computed in advance, which is not always possible or feasible, or some other
techniques are needed to identify where the search can be stopped. In our system,
termination is guaranteed by a suitable encoding of the tableau’s PRUNE rule.
This rule was the main novelty of Reynolds’ one-pass and tree-shaped system when
it was originally proposed [22], has a clean model-theoretic interpretation [13], and
the important role it plays in our encoding adds up to its interesting properties.
The result is a simple and complete bounded satisfiability checking procedure
based on a small and much simpler SAT encoding.

We implemented the proposed procedure and encoding in a tool, called BLACK
for (Bounded Ltl sAtisfiability ChecKer), and we report the outcomes of an initial
experimental evaluation, comparing it with other state-of-the-art tools. The results
are promising, consistently improving over the tableau explicit construction.

The paper proceeds as follows. Section 2 includes a brief account of LTL
and of Reynold’s one-pass and tree-shaped tableau system. Section 3 shows the
base encoding of the tableau rules, excepting the PRUNE rule, building a system
that terminates correctly on satisfiable instances. Later, Section 4 describes and
discusses the encoding of the PRUNE rule, completing the procedure. Section 5
describes the BLACK tool, together with the results of the experimental evaluation.
Section 6 concludes and highlights possible future developments.
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2 Preliminaries

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) is a propositional modal logic interpreted over
infinite (discrete) linear orders. Syntactically, LTL can be viewed as an extension
of propositional logic with the tomorrow (X φ), until (α U β), and release (αR β)
operators. Given a set Σ = {p, q, r, . . .} of atomic propositions, LTL formulae are
inductively defined as follows:

φ := p | ¬φ1 | φ1 ∨ φ2 | φ1 ∧ φ2 Boolean operators
| X φ1 | φ1 U φ2 | φ1R φ2 temporal operators

Note that, given the disjunction and until operator, the conjunction and release
ones are not necessary (in particular, φ1R φ2 ≡ ¬(¬φ1 U ¬φ2)). However, it is
useful to consider them as primitive, in order to allow any LTL formula φ to be
put into negated normal form, producing a linear-size equivalent formula, noted as
nnf(φ), such that negations appear only applied to proposition letters. Moreover,
common shorthands can be defined, such as the eventually (Fφ1 ≡ > U φ1) and
always (Gφ1 ≡ ¬F(¬φ1)) operators.

LTL formulae are interpreted over infinite state sequences σ = 〈σ0, σ1, . . .〉,
with σi ⊆ Σ for each i ≥ 0. Given a state sequence σ, a position i ≥ 0, and
an LTL formula φ, the satisfaction of φ by σ at position i, written σ |=i φ, is
inductively defined as follows:

1. σ |=i p iff p ∈ σi
2. σ |=i ¬φ iff σ 6|=i φ
3. σ |=i φ1 ∨ φ2 iff either σ |=i φ1 or σ |=i φ2
4. σ |=i φ1 ∧ φ2 iff σ |=i φ1 and σ |=i φ2
5. σ |=i X φ iff σ |=i+1 φ
6. σ |=i φ1 U φ2 iff there exists j ≥ i such that σ |=j φ2 and

σ |=k φ1 for all i ≤ k < j
7. σ |=i φ1R φ2 iff for all j ≥ i, either σ |=j φ2 or there

exists i ≤ k < j such that σ |=k φ1.

We say that σ satisfies φ, written σ |= φ, if and only if the state sequence σ
satisfies φ at its first state, i.e., σ |=0 φ. In this case, we say that σ is a model of φ.

2.2 The one-pass and tree-shaped tableau system

We now describe Reynolds’ tableau system for LTL. After its original formulation
in [22], the system was extended to support past operators [14] and more expressive
real-time logics [13]. Here, we briefly recall its original future-only version, which
is the one considered for the SAT encoding described in the next section.

The tableau for a formula φ is a tree where each node u is labelled by a set
Γ (u) of formulae from the closure C(φ) of φ. At each step of the construction,
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Rule φ Γ1(φ) Γ2(φ)

DISJUNCTION α ∨ β {α} {β}
UNTIL α U β {β} {α,X(α U β)}

RELEASE αR β {α, β} {β,X(αR β)}
EVENTUALLY Fβ {β} {X Fβ}

CONJUNCTION α ∧ β {α, β}
ALWAYS Gα {α,X Gα}

Table 2. Tableau expansion rules. When a formula φ of one of the types shown in the
table is found in the label Γ of a node u, one or two children u′ and u′′ are created with
the same label as u excepting for φ, which is replaced, respectively, by the formulae
from Γ1(φ) and Γ2(φ).

a set of rules is applied to each leaf node. Each rule can possibly append one
or more children to the node, or either accept (3) or reject (7) the node. The
construction continues until all leaves are either accepted or rejected, resulting
into at least one accepted leaf if and only if the formula is satisfiable, with the
corresponding branch representing a satisfying model for the formula. A node
whose label contains only elementary formulae, i.e., propositions or tomorrow
operators, is called a poised node. At each step, the expansion rules are applied to
any non-poised leaf node. The rules are given in Table 2. For each non-elementary
formula ψ ∈ C(φ), the corresponding expansion rule defines two sets of expanded
formulas Γ1(ψ) and Γ2(ψ), with the latter possibly empty. The application of the
rule to a node u adds a child u′ to u such that Γ (u′) = Γ (u) \ {ψ} ∪ Γ1(ψ), and,
if Γ2(ψ) 6= ∅, a second child u′′ such that Γ (u′′) = Γ (u) \ {ψ} ∪ Γ2(ψ).

Expansion rules are applied to non-poised nodes until a poised node is
produced. Then, a number of termination rules are applied, to decide whether
the node can be accepted, rejected, or the construction can proceed. In what
follows, a formula of the type X(α U β) is called X-eventuality. Given a branch
u = 〈u0, . . . , un〉, an X-eventuality ψ is said to be requested in some node ui if
ψ ∈ Γ (ui), and fulfilled in some node uj , with j ≥ i, if β ∈ Γ (uj).

Let u = 〈u0, . . . , un〉 be a branch with poised leaf un. The termination rules
are the following, to be applied in the given order:

EMPTY If Γ (un) = ∅, then un is accepted.
CONTRADICTION If {p,¬p} ⊆ Γ (un), for some p ∈ Σ, then un is rejected.

LOOP If there is a poised node ui < un such that Γ (un) = Γ (ui),
and all the X-eventualities requested in ui are fulfilled in the
nodes between ui+1 and un, then un is accepted.

PRUNE If there are three positions i < j < n, such that Γ (ui) =
Γ (uj) = Γ (un), and among the X-eventualities requested
in these nodes, all those fulfilled between uj+1 and un are
fulfilled between ui+1 and uj as well, then un is rejected.
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If the branch is neither accepted nor rejected, the construction of the branch
proceeds to the next temporal step by applying the STEP rule.

STEP A child un+1 is added to un such that Γ (un+1) = {ψ | Xψ ∈ Γ (un)}.

Intuitively, given an accepted branch of the complete tableau for φ, the poised
nodes are labelled by the formulae that hold in the states of the corresponding
model for the formula. Depending on whether the branch is accepted by the
EMPTY or the LOOP rule, it either corresponds to a finite (also called loop-free)
model or to a periodic one (also called lasso-shaped), whose period corresponds
to the segment in between the nodes that trigger the LOOP rule. If a branch is
rejected, it happens either because of a logical contradiction, that triggers the
CONTRADICTION rule, or because of the PRUNE rule, which avoids the tableau
to infinitely postpone a request that is impossible to fulfil. From a model-theoretic
point of view [13], the PRUNE rule allows one not to consider models that contain
redundant segments, i.e., segments that just repeat some previously done piece of
work without contributing further to the satisfaction of all the pending requests.
Recent work [13] provided a model-theoretic interpretation of this mechanism,
showing a characterization of the discarded models.

3 SAT-based encoding of the tableau

This section describes the SAT-based encoding of Reynolds’ tableau. In particular,
we first describe the whole encoding apart from the PRUNE rule, which is described
and discussed in detail in the next section, where the complete satisfiability
checking procedure is provided.

As already pointed out, the overall structure of our procedure is similar to
other bounded satisfiability checking approaches. At each step k, ranging from zero
upwards, we produce a Boolean formula |φ|k, which represents all the accepted
branches of the tableau of depth at most k. The satisfaction of such a formula
witnesses the existence of an accepted branch of the tableau, which in turn
proves the existence of a model for the formula. If the formula is unsatisfiable,
we can proceed to the next depth level. Note that this corresponds to a symbolic
breadth-first traversal of the complete tableau for φ. Such a procedure would be
incomplete, possibly running forever on some unsatisfiable instances, without
some halting criterion, which in our case is provided by the encoding of the
PRUNE rule as described in Section 4. Let us now proceed with the description of
the base encoding. In what follows, any LTL formula is assumed to be in negated
normal form.

3.1 Notation

We now define some notation, useful for what follows. Let φ be an LTL formula
(in negated normal form) over the alphabet Σ. The closure of φ is the set of
formulae C(φ) defined as follows:
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1. φ ∈ C(φ);
2. if Xψ ∈ C(φ), then ψ ∈ C(φ);
3. if ψ ∈ C(φ), then Γ1(φ) ⊆ C(φ) and Γ2(φ) ⊆ C(φ) (as defined in Table 2).

Then, let XR(φ) ⊆ C(φ) be the set of all the tomorrow formulae (X-requests)
in C(φ), i.e., all the formulae Xψ ∈ C(φ), and let XEV ⊆ XR(φ) be the set of all
the X-eventualities in C(φ), i.e., all the formulae X(α U β) ∈ C(φ).

The propositional encoding of the formula φ is defined over an extended
alphabet Σ+, which includes:

1. any proposition from the original alphabet Σ;
2. the grounded X-requests, i.e., a proposition noted as ψG for all ψ ∈ XR(φ);
3. a stepped version pk, for any k ∈ N, of all the propositions p above, with p0

identified as p.

Some notation complements the above extended propositions. In particular, for
all ψ ∈ C(φ), we denote by ψG the formula obtained by replacing any ρ ∈ XR(φ)
appearing in ψ by ρG. Similarly, for all ψ ∈ C(φ), we denote as ψk, with k ∈ N,
the formula obtained from ψ by replacing any proposition p with pk. Intuitively,
different stepped versions of the same proposition p are used to represent the
value of p at different states. From now on, for any formula ψ ∈ C(φ), we will
write ψkG as a shorthand for the formula ((ψ)G)k.

Finally, we recall the definition of a simple transformation of LTL formulae
which is heavily used in our encoding.

Definition 1 (Next Normal Form). An LTL formula φ is in next normal form
iff every until or release subformula appears in the operand of a tomorrow.

An LTL formula φ can be turned into its next normal form equivalent formula
xnf(φ) as follows:

1. xnf(p) ≡ p and xnf(¬p) = ¬p for all p ∈ Σ;
2. xnf(Xψ1) ≡ Xψ1 for all Xψ1 ∈ C(φ);
3. xnf(ψ1 ∧ ψ2) ≡ xnf(ψ1) ∧ xnf(ψ2) for all ψ1 and ψ2;
4. xnf(ψ1 ∨ ψ2) ≡ xnf(ψ1) ∨ xnf(ψ2) for all ψ1 and ψ2;
5. xnf(ψ1 U ψ2) ≡ xnf(ψ2) ∨ (xnf(ψ1) ∧ X(ψ1 U ψ2)) for all ψ1 and ψ2;
6. xnf(ψ1R ψ2) ≡ xnf(ψ2) ∧ (xnf(ψ1) ∨ X(ψ1R ψ2)) for all ψ1 and ψ2.

Although the above definition has been recalled by other authors as well [17],
it can be seen how it follows the same structure as the expansion rules defined in
Table 2, which is not surprising, since these rules trace back to earlier graph-shaped
tableaux [18, 19]. This connection makes it evident that the above definition
produces an equivalent formula, as ψ ≡ Γ1(ψ) ∨ Γ2(ψ) for all the cases covered
by Table 2.

3.2 Expansion of the tree

We can now define the first building block of our encoding. The k-unraveling of
φ, denoted as JφKk, is a propositional formula that encodes the expansion of all
the branches of the tableau tree up to at most k + 1 poised nodes per branch.
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Definition 2 (k-unraveling). Let φ be an LTL formula over Σ and some k ∈ N.
The k-unraveling of φ is a propositional formula JφKk over Σ+ defined as follows:

JφK0 = xnf(φ)G
JφKk+1 = JφKk ∧

∧
Xα∈XR

(
(Xα)kG ↔ xnf(α)k+1

G

)
Although such branches may in general have different length, they can be

regarded as having the same depth as far as the corresponding model is con-
cerned, since each state corresponds to a poised node. Thus, we may regard the
k-unraveling as a symbolic encoding of a breadth-first traversal of the tree. The
formula encodes the expansion rules by means of the next normal form trans-
formation, and the STEP rule by tying the grounded X-request at step k with its
(grounded) requested formula at step k + 1, which ensures temporal consistency
between two adjacent states in the model (i.e., σ |=i Xψ ↔ σ |=i+1 ψ). More-
over, the CONTRADICTION rule is implicitly encoded as well, since satisfying
assignments to the formula cannot represent branches containing propositional
contradictions. Hence the following holds.

Proposition 1 (Soundness of the k-unraveling). Let φ be an LTL formula.
Then, JφKk is unsatisfiable if and only if the complete tableau for φ contains only
branches with at most k + 1 poised nodes crossed by contradiction.

Note that JφKk+1 can be computed incrementally from JφKk, by adding only
the second conjunct of the definition. This speeds up the construction of the
formula itself as well as the solution process of modern incremental SAT-solvers.

3.3 Encoding of accepted branches

Once all non-crossed branches of a given depth have been identified with the
k-unraveling, the accepted branches of such a depth can be represented by the
conjunction of the propositional encoding of the EMPTY and LOOP rules of
the tableau. This allows us to terminate the unraveling process in the case of a
satisfiable formula.

The EMPTY rule, which is the simplest rule to encode, accepts loop-free
models of the formula, that are identified by poised nodes lacking X-requests. In
what follows, let XRk ⊆ XR be the set of X-requests that appear (grounded) in
the k-th conjunct of the k-unraveling for φ. Similarly, let XEVk ⊆ XRk be the
X-eventualities (i.e., formulae of the form X(ψ1 U ψ2)) found in XRk. The EMPTY
rule can be encoded as follows:

Ek :=
∧

ϕ∈XRk

¬ϕkG

Then, each satisfying assignment of the formula JφKk ∧ Ek corresponds to a
branch of the tableau for φ, with exactly k + 1 poised nodes, accepted by the
EMPTY rule. Note that it would still be sound to use the full XR instead of XRk
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in the definition above, but, in general, the latter is likely to be a smaller set,
thus making the formula smaller.

The encoding of the LOOP rule, which accepts branches corresponding to
lasso-shaped (periodic) models, is built on top of two pieces. For each 0 ≤ l < k,
let lRk and lFk be defined as follows:

lRk :=
∧

ψ∈XRk

ψlG ↔ ψkG

lFk :=
∧

ψ∈XEVk

ψ≡X(ψ1Uψ2)

(
ψkG →

k∨
i=l+1

xnf(ψ2)iG
)

Given a branch u = 〈u0, . . . , uk〉 identified by JφKk, lRk states that the nodes
ul and uk have the same set of X-requests, and lFk states that all such X-requests
are fulfilled between nodes ul and uk. Together, they can be used to express the
whole triggering condition of the LOOP rule:

Lk :=
k−1∨
l=0

(lRk ∧ lFk)

Then, each satisfying assignment of JφKk ∧ Lk corresponds to a branch of the
tableau for φ, with exactly k+1 poised nodes, accepted by the LOOP rule, i.e., with
a satisfying loop between position k and some previous position. Together, JφKk,
Ek, and Lk can represent any accepted branch of the tableau of the given depth.

Definition 3 (Base encoding). Let φ be an LTL formula over Σ and k ∈ N. The
base encoding of φ at step k is the formula |φ|k over Σ+ defined as follows:

|φ|k := JφKk︸︷︷︸
exp. rules
STEP rule

∧
(

Ek︸︷︷︸
EMPTY rule

∨ Lk︸︷︷︸
LOOP rule

)

Again, note that the base encoding can be built incrementally, allowing
us to exploit the features of modern SAT solvers. Indeed, |φ|k consists of the
conjunction of JφKk, built from the already computed JφKk−1, and Ek ∨ Lk.

The construction of Lk gives us the following result.

Proposition 2 (Soundness of the base encoding). Let φ be an LTL formula.
Then, |φ|k is satisfiable if and only if the complete tableau for φ contains at least
an accepted branch with exactly k + 1 poised nodes.

Propositions 1 and 2, together with the soundness result for Reynolds’ tableau
given in [22], lead us to the following result.

Theorem 1 (Soundness). Given an LTL formula φ, if |φ|k is satisfiable, for
some k ∈ N, then φ is satisfiable.
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1: procedure BSC(φ)
2: k ← 0
3: while True do
4: generate |φ|k
5: if |φ|k is SAT then
6: φ is SAT
7: stop
8: k ← k + 1

Fig. 1. Incomplete satisfiability checking procedure built on top of the base encoding.

Figure 1 shows a basic procedure that can be built on top of the encoding of
Definition 3. The procedure starts with k = 0, and increments it at each step,
looking for models of increasing size, stopping when a step k is found with a
satisfiable base encoding. The procedure is incomplete, as it may not terminate
on unsatisfiable instances, similarly to early bounded model checking techniques.

If the procedure terminates, then the satisfying assignment for |φ|k can be
used to build a model σ ⊆ Σω of φ of minimal length, where, in the case of
periodic models, the length is considered as the sum of the prefix and the period
lengths. This breadth-first traversal, with the guarantee of finding a minimal
model, would not be feasible if carried out explicitly, and it is a distinguishing
feature of bounded satisfiability checking of this kind. Explicit implementations
of Reynolds’ tableau system [3] proceed instead in a depth-first way, and the
models they find are not guaranteed to be minimal in length.

The next section adds to the picture the encoding of the PRUNE rule, showing
how to integrate the above procedure in order to guarantee the termination for
any unsatisfiable instance as well.

4 Completeness

In order to ensure termination of the algorithm in Figure 1 also on unsatisfiable
formulae, it is useful to look at the possible reasons why the base encoding |φ|k
of a formula φ may be unsatisfiable. We can distinguish two cases:

1. if the formula JφKk is unsatisfiable, it means that all the branches of the
tableau for φ are crossed by the CONTRADICTION rule at or before depth k
(see Proposition 1);

2. if both JφKk∧Ek and JφKk∧Lk are unsatisfiable, then there are no branches of
depth k accepted by the EMPTY rule or by the LOOP rule (see Proposition 2).

As an example of the first case, consider the formula X p ∧ X¬p, whose 1-
unraveling is JX p ∧ X¬pK1 ≡ (X p)0

G ∧ (X¬p)0
G ∧ p1 ∧ ¬p1. At step k = 1, the

formula is found to be unsatisfiable because of a propositional contradiction
between p1 and ¬p1. At this point there is no reason to continue looking further:
we can stop incrementing k and answer UNSAT.
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The second case, instead, does not exclude that longer accepted branches
exist, and require looking further. One interesting example is the (unsatisfiable)
formula G¬p ∧ q U p: it holds that |G¬p ∧ q U p|k is unsatisfiable for all k ≥ 0,
since any branch can be accepted neither by the LOOP rule (because G¬p forces
pi to be false for each 0 ≤ i ≤ k) nor by the EMPTY rule (because the failed
fulfilment of q U p forces X(q U p)i to be true for each 0 ≤ i ≤ k). Nevertheless,
JG¬p∧ q U pKk is satisfiable for all k ≥ 0, because the branch of the tableau that
indefinitely postpones the satisfaction of q U p is never closed by contradiction.
Hence, the procedure in Figure 1 can never be able to stop in this case.

In the tableau, such a branch is, instead, rejected by the PRUNE rule, whose
role is exactly that of rejecting these potentially infinite branches. We can
similarly recover termination and completeness of our procedure by introducing
a propositional encoding of the rule.

Recall that the PRUNE rule rejects any branch of length k that presents
two positions l < j < k, with the same set of X-requests, such that all the
X-eventualities fulfilled between j + 1 and k are fulfilled between l + 1 and j as
well. Let i and j be one such pair of positions. We can encode the condition of
the PRUNE rule by means of the following formula:

lP
k
j :=

∧
ψ∈XEVk

ψ≡X(ψ1Uψ2)

(
ψkG ∧

k∨
i=j+1

xnf(ψ2)iG →
j∨

i=l+1
xnf(ψ2)iG

)

Then, the above formula can be combined with the lRk formula defined in the
previous section to obtain the following encoding of the PRUNE rule:

P k :=
k−2∨
l=0

k−1∨
j=l+1

(
lRj ∧ jRk ∧ lP kj

)
It is worth to note that the P k formula is of cubic size with respect to k and

the number of X-eventualities. With this formula, in case of an unsatisfiable base
encoding, we can check whether there exists at least one branch of depth at most
k which does not satisfy the prune condition: if this is the case, then it makes
sense to continue the search; otherwise, the procedure can stop reporting the
unsatisfiability of the formula. This is done by testing the satisfiability of the
termination encoding of φ, defined as the following formula:

|φ|kT := JφKk︸︷︷︸
exp. rules
STEP rule

∧
k∧
i=0
¬P i︸︷︷︸
PRUNE rule

The complete procedure is shown in Figure 2, where the first step k such that
|φ|kT is unsatisfiable stops the search. Based on the soundness and completeness
result for the encoded tableau system [22], we can state the following result.

Theorem 2 (Soundness and completeness). For every LTL formula φ, the
procedure of Figure 2 always terminates, and it answers SAT iff φ is satisfiable.
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1: procedure LTL-SAT-PRUNE(φ)
2: k ← 0
3: while True do
4: generate JφKk

5: if JφKk is UNSAT then
6: φ is UNSAT
7: stop
8: generate |φ|k
9: if |φ|k is SAT then
10: φ is SAT
11: stop
12: generate |φ|kT
13: if |φ|kT is UNSAT then
14: φ is UNSAT
15: stop
16: k ← k + 1

Fig. 2. Complete and terminating satisfiability checking procedure based on the tableau
encoding

Notably, the procedure guarantees termination and completeness without
establishing a priori a bound to the depth of the tree, at the cost of a slightly
bigger formula and three calls to the underlying solver.

It is worth to spend some words on how the above procedure can exploit the
incrementality of modern SAT solvers to speed up its execution. Many modern
solvers have a push/pop interface that allows the client to push some conjuncts to
a stack, solve them, then pop some of them while pushing others, maintaining all
the information about the untouched conjuncts. In our case, the construction of
JφKk only requires the addition of a conjunct to JφKk−1, and |φ|k only requires to
join Ek ∨Lk to JφKk. This means that such a conjunct can be pushed temporarily,
while maintaining all the solver state about JφKk for the next step. Moreover, the
formula JφKk generated and solved at Lines 4 and 5 of Figure 2 can be replaced by
one built on top of the whole |φ|k−1

T from the previous step, instead of only from
JφKk−1. This allows us to avoid to backtrack the additional conjuncts of |φ|kT .
Since the PRUNE rule cuts redundant branches, maintaining the corresponding
formulae from step to step helps guiding the solver through relevant branches.

5 Experimental evaluation

The procedure described in this paper is implemented in a tool called BLACK
(Bounded Ltl sAtisfiability ChecKer).3 This section describes relevant aspects of
the tool and shows the results of our preliminary experimental evaluation, where
it has been compared with other state-of-the-art LTL solvers.
3 BLACK can be downloaded from https://github.com/black-sat/black, together
with the whole benchmarking suite and the raw results data.

https://github.com/black-sat/black
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BLACK has been implemented from scratch in the C++17 language with the
goals of efficiency, portability, and reusability. Most of the tool is implemented
as a shared library with a well-defined API, that can be linked to other client
applications as needed. The library provides basic formula handling facilities,
and an interface to the main solving algorithm. The tool itself is as well a client
of such a library, providing a simple command-line user interface.

The tool is currently implemented on top of MathSAT [5], used as its back-end
SAT solver, which is actually a full-blown SMT solver. This choice was driven by
the fact that, contrary to most pure-SAT solvers, MathSAT supports formulae
with a general syntax, without the need of a preliminary conversion to CNF.
This feature greatly simplified the initial development cycle of the project. Future
plans include the support to multiple different SAT solvers, including those with
simple CNF-based APIs, to find the most performant candidate.

The satisfiability checking procedure described above is implemented on
top of a formula handling layer, which eases the development of the solver by
decoupling the logical encoding from low-level details. In particular, the lower
layer transparently implements subterm sharing, i.e., formulas are internally
represented as circuits, by identifying repeated subformulas. Besides the positive
effects on memory usage, this mechanism matches well with the term-based API of
the MathSAT library. Most importantly, syntactic equality of two formulae reduces
to a single pointer comparison, since building any two equal formulae results into
two pointers to the same object. A peculiar feature of BLACK’s formulas handling
layer is that atomic propositions can be labeled by values of almost any data
type, in contrast to being restricted to strings, integers, or similar identifiers. In
this way, the grounding operation (ψG) performed on X-requests by our encoding
(such as in JφKk) is effectively a no-op: the grounding of an X-request formula is
just an atomic proposition labelled by the formula’s representing object, with
no need for any translation table between the formulae and their corresponding
grounded symbols. Since formulas are uniquely identified by just the pointer
to their object, this is implementable in such a way that the common cases of
propositions labeled by short strings, formulae, and formula/integer pairs (for
the stepped versions ψkG) do not cause any memory allocation.

In our experiments, we compared BLACK with four competitors: Aalta
v2.0 [17], nuXmv [6], Leviathan [3], and PLTL [1, 24]. The nuXmv model checker
is tested in two modes, which implement, respectively, the Simple Bounded Model
Checking (SBMC) [15] and the K-Liveness [8] techniques. The SBMC mode is
the most similar to ours among the tested solvers. The PLTL tool implements
both a graph-shaped [1] and an almost tree-shaped [24] tableau techniques. Fi-
nally, Leviathan is an explicit implementation of Reynolds’ tableau [3]. Because
of technical issues, we could not include the LS4 [26] tool in our test. Future
experiments will include this and other competitors as well.

We considered the comprehensive set of formulae collected by Schuppan and
Darmawan [23], which contains a total of 3723 LTL formulae, grouped in seven
families, acacia, alaska, anzu, forobots, rozier, schuppan, trp, named after
their original source. We set a timeout of five minutes for each formula in the set.
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Fig. 3. Total number of timeouts and out of memory interruptions of the solvers on
the different class of benchmark formulas.

We ran our tests on a Quad Core i5-2500k 3.30GHz processor, with 8GB of
main memory. Processes were assigned a single CPU core each, with a memory
limit of 2GB per core and a five minutes timeout. Figures 4 and 5 show six
scatter plots comparing the execution times, while Figure 3 shows the number of
timeouts and out of memory interruptions for the tools on each class of formulas.

Overall, the results are promising. Although Aalta remains the most perfor-
mant tool, the picture is mixed. In particular, BLACK is competitive with regards
to nuXmv. With regards to the SBMC mode, the advantage is consistent but con-
stant, showing similar trends both on satisfiable and unsatisfiable instances. The
rozier set comes as an exception. Apart from the counter formulas, which are
hard for both solvers, all these formulas have very short models, which is an advan-
tage for iterative deepening approaches like ours. SBMC shares the same principle,
but the large difference between BLACK and nuXmv on most of this set may be
explained by (i) the simpler base encoding employed by BLACK, whose asymptoti-
cally larger size does not bite at lower values of the bound k, and/or (ii) differences
between the SAT solvers underlying the two tools (the distributed binary of
nuXmv is linked to minisat [12]). When comparing with nuXmv in k-liveness
mode, we can see an interesting pattern on trp unsatisfiable instances, with some
formulas being solved in milliseconds while others reach the timeout limit. As
recalled in [23], this is a set of random instances, hence the erratic behavior cannot
a priori be tied to any particular combination of parameters. The comparison
with Leviathan and the other explicit tableaux implemented by PLTL is easier to
analyze. BLACK performs consistently better than the two tools, which suffer from
a predictable explosion in memory usage in most instances. Notably, they perform
very well on formulas with very narrow search trees, such as the rozier counters.
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6 Conclusions

This paper described a satisfiability checking algorithm for LTL formulae based
on a SAT encoding of Reynolds’ one-pass and tree-shaped tableau system [22].
Both the expansion of the tableau tree and its rules are represented by Boolean
formulae, whose satisfying assignments represent all the branches of the tableau
up to a given depth k. Notably, the encoding of Reynolds’ PRUNE rule results in a
simple yet effective termination condition for the algorithm, which is a non-trivial
task in other bounded model checking approaches [15].

We implemented our procedure in the BLACK tool and made some preliminary
experimental comparison with state-of-the-art LTL solvers. The tool shows good
performance overall. In particular, it outperforms Leviathan, the explicit imple-
mentation of Reynolds’ tableau, and shows interesting results against the similar
simple bounded model checking approach. The results are promising, especially
considering that the encoding has been implemented very simply as shown above,
without any sort of heuristics in the generation of the encoded formulas. Further
work should consider more compact encoding for the unraveling and for the LOOP
and PRUNE rules, the use and comparison of different backend SAT solvers, and
heuristics for the search of the bound.

From a theoretical perspective, the followed approach has to be compared
with others, especially with bounded ones [15], on a conceptual, rather than
experimental, level. In particular, it is worth comparing the PRUNE rule with the
terminating conditions exploited in other bounded approaches, to understand
their difference and draw possible connections.

A number of extensions of Reynolds’ tableau to other logics have been proposed
since its inception. In particular, the extension to past operators [14] appears
to be easy to be encoded, without resorting to the virtual unrollings technique
used in other bounded approaches [15]. Reynolds’ tableau system has also been
extended to timed logics [13], in particular TPTL [2] and a TPTLb+P [11]. It
is natural to ask whether the approach used here to encode the LTL tableau to
SAT can be adapted to encode the timed extensions of the tableau to SMT.
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