1,570 research outputs found

    Learning the Structure and Parameters of Large-Population Graphical Games from Behavioral Data

    Full text link
    We consider learning, from strictly behavioral data, the structure and parameters of linear influence games (LIGs), a class of parametric graphical games introduced by Irfan and Ortiz (2014). LIGs facilitate causal strategic inference (CSI): Making inferences from causal interventions on stable behavior in strategic settings. Applications include the identification of the most influential individuals in large (social) networks. Such tasks can also support policy-making analysis. Motivated by the computational work on LIGs, we cast the learning problem as maximum-likelihood estimation (MLE) of a generative model defined by pure-strategy Nash equilibria (PSNE). Our simple formulation uncovers the fundamental interplay between goodness-of-fit and model complexity: good models capture equilibrium behavior within the data while controlling the true number of equilibria, including those unobserved. We provide a generalization bound establishing the sample complexity for MLE in our framework. We propose several algorithms including convex loss minimization (CLM) and sigmoidal approximations. We prove that the number of exact PSNE in LIGs is small, with high probability; thus, CLM is sound. We illustrate our approach on synthetic data and real-world U.S. congressional voting records. We briefly discuss our learning framework's generality and potential applicability to general graphical games.Comment: Journal of Machine Learning Research. (accepted, pending publication.) Last conference version: submitted March 30, 2012 to UAI 2012. First conference version: entitled, Learning Influence Games, initially submitted on June 1, 2010 to NIPS 201

    Game Theory Solutions in Sensor-Based Human Activity Recognition: A Review

    Full text link
    The Human Activity Recognition (HAR) tasks automatically identify human activities using the sensor data, which has numerous applications in healthcare, sports, security, and human-computer interaction. Despite significant advances in HAR, critical challenges still exist. Game theory has emerged as a promising solution to address these challenges in machine learning problems including HAR. However, there is a lack of research work on applying game theory solutions to the HAR problems. This review paper explores the potential of game theory as a solution for HAR tasks, and bridges the gap between game theory and HAR research work by suggesting novel game-theoretic approaches for HAR problems. The contributions of this work include exploring how game theory can improve the accuracy and robustness of HAR models, investigating how game-theoretic concepts can optimize recognition algorithms, and discussing the game-theoretic approaches against the existing HAR methods. The objective is to provide insights into the potential of game theory as a solution for sensor-based HAR, and contribute to develop a more accurate and efficient recognition system in the future research directions

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Semantic Sort: A Supervised Approach to Personalized Semantic Relatedness

    Full text link
    We propose and study a novel supervised approach to learning statistical semantic relatedness models from subjectively annotated training examples. The proposed semantic model consists of parameterized co-occurrence statistics associated with textual units of a large background knowledge corpus. We present an efficient algorithm for learning such semantic models from a training sample of relatedness preferences. Our method is corpus independent and can essentially rely on any sufficiently large (unstructured) collection of coherent texts. Moreover, the approach facilitates the fitting of semantic models for specific users or groups of users. We present the results of extensive range of experiments from small to large scale, indicating that the proposed method is effective and competitive with the state-of-the-art.Comment: 37 pages, 8 figures A short version of this paper was already published at ECML/PKDD 201

    Achilles Heels for AGI/ASI via Decision Theoretic Adversaries

    Full text link
    As progress in AI continues to advance, it is crucial to know how advanced systems will make choices and in what ways they may fail. Machines can already outsmart humans in some domains, and understanding how to safely build ones which may have capabilities at or above the human level is of particular concern. One might suspect that artificially generally intelligent (AGI) and artificially superintelligent (ASI) systems should be modeled as as something which humans, by definition, can't reliably outsmart. As a challenge to this assumption, this paper presents the Achilles Heel hypothesis which states that even a potentially superintelligent system may nonetheless have stable decision-theoretic delusions which cause them to make obviously irrational decisions in adversarial settings. In a survey of relevant dilemmas and paradoxes from the decision theory literature, a number of these potential Achilles Heels are discussed in context of this hypothesis. Several novel contributions are made toward understanding the ways in which these weaknesses might be implanted into a system.Comment: Contact info for author at stephencasper.co

    A network model of interpersonal alignment in dialog

    Get PDF
    In dyadic communication, both interlocutors adapt to each other linguistically, that is, they align interpersonally. In this article, we develop a framework for modeling interpersonal alignment in terms of the structural similarity of the interlocutors’ dialog lexica. This is done by means of so-called two-layer time-aligned network series, that is, a time-adjusted graph model. The graph model is partitioned into two layers, so that the interlocutors’ lexica are captured as subgraphs of an encompassing dialog graph. Each constituent network of the series is updated utterance-wise. Thus, both the inherent bipartition of dyadic conversations and their gradual development are modeled. The notion of alignment is then operationalized within a quantitative model of structure formation based on the mutual information of the subgraphs that represent the interlocutor’s dialog lexica. By adapting and further developing several models of complex network theory, we show that dialog lexica evolve as a novel class of graphs that have not been considered before in the area of complex (linguistic) networks. Additionally, we show that our framework allows for classifying dialogs according to their alignment status. To the best of our knowledge, this is the first approach to measuring alignment in communication that explores the similarities of graph-like cognitive representations. Keywords: alignment in communication; structural coupling; linguistic networks; graph distance measures; mutual information of graphs; quantitative network analysi
    • 

    corecore