10 research outputs found

    Game characterizations and lower cones in the Weihrauch degrees

    Get PDF
    We introduce a parametrized version of the Wadge game for functions and show that each lower cone in the Weihrauch degrees is characterized by such a game. These parametrized Wadge games subsume the original Wadge game, the eraser and backtrack games as well as Semmes's tree games. In particular, we propose that the lower cones in the Weihrauch degrees are the answer to Andretta's question on which classes of functions admit game characterizations. We then discuss some applications of such parametrized Wadge games. Using machinery from Weihrauch reducibility theory, we introduce games characterizing every (transfinite) level of the Baire hierarchy via an iteration of a pruning derivative on countably branching trees

    Stashing And Parallelization Pentagons

    Get PDF
    Parallelization is an algebraic operation that lifts problems to sequences in a natural way. Given a sequence as an instance of the parallelized problem, another sequence is a solution of this problem if every component is instance-wise a solution of the original problem. In the Weihrauch lattice parallelization is a closure operator. Here we introduce a dual operation that we call stashing and that also lifts problems to sequences, but such that only some component has to be an instance-wise solution. In this case the solution is stashed away in the sequence. This operation, if properly defined, induces an interior operator in the Weihrauch lattice. We also study the action of the monoid induced by stashing and parallelization on the Weihrauch lattice, and we prove that it leads to at most five distinct degrees, which (in the maximal case) are always organized in pentagons. We also introduce another closely related interior operator in the Weihrauch lattice that replaces solutions of problems by upper Turing cones that are strong enough to compute solutions. It turns out that on parallelizable degrees this interior operator corresponds to stashing. This implies that, somewhat surprisingly, all problems which are simultaneously parallelizable and stashable have computability-theoretic characterizations. Finally, we apply all these results in order to study the recently introduced discontinuity problem, which appears as the bottom of a number of natural stashing-parallelization pentagons. The discontinuity problem is not only the stashing of several variants of the lesser limited principle of omniscience, but it also parallelizes to the non-computability problem. This supports the slogan that "non-computability is the parallelization of discontinuity"

    The fixed-point property for represented spaces

    Get PDF
    We investigate which represented spaces enjoy the fixed-point property, which is the property that every continuous multi-valued function has a fixed-point. We study the basic theory of this notion and of its uniform version. We provide a complete characterization of countable-based spaces with the fixed-point property, showing that they are exactly the pointed ω-continuous dcpos. We prove that the spaces whose lattice of open sets enjoys the fixed-point property are exactly the countably-based spaces. While the role played by fixed-point free functions in the diagonal argument is well-known, we show how it can be adapted to fixed-point free multi-valued functions, and apply the technique to identify the base-complexity of the Kleene-Kreisel spaces, which was an open problem

    Game characterizations and lower cones in the Weihrauch degrees

    No full text
    We introduce a parametrized version of the Wadge game for functions and showthat each lower cone in the Weihrauch degrees is characterized by such a game.These parametrized Wadge games subsume the original Wadge game, the eraser andbacktrack games as well as Semmes's tree games. In particular, we propose thatthe lower cones in the Weihrauch degrees are the answer to Andretta's questionon which classes of functions admit game characterizations. We then discuss some applications of such parametrized Wadge games. Usingmachinery from Weihrauch reducibility theory, we introduce games characterizingevery (transfinite) level of the Baire hierarchy via an iteration of a pruningderivative on countably branching trees

    Game characterizations and lower cones in the Weihrauch degrees

    No full text
    We introduce a parametrized version of the Wadge game for functions and show that each lower cone in the Weihrauch degrees is characterized by such a game. These parametrized Wadge games subsume the original Wadge game, the eraser and backtrack games as well as Semmes's tree games. In particular, we propose that the lower cones in the Weihrauch degrees are the answer to Andretta's question on which classes of functions admit game characterizations. We then discuss some applications of such parametrized Wadge games. Using machinery from Weihrauch reducibility theory, we introduce games characterizing every (transfinite) level of the Baire hierarchy via an iteration of a pruning derivative on countably branching trees
    corecore