

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Logical Methods in Computer Science

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa51342

Paper:

Nobrega, H. & Pauly, A. (2019). Game characterizations and lower cones in the Weihrauch degrees. Logical Methods

in Computer Science, 15(3), 1-29.

http://dx.doi.org/10.23638/LMCS-15(3:11)2019

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/224750155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa51342
http://dx.doi.org/10.23638/LMCS-15(3:11)2019
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Logical Methods in Computer Science
Volume 15, Issue 3, 2019, pp. 11:1–11:29
https://lmcs.episciences.org/

Submitted Feb. 15, 2018
Published Aug. 06, 2019

GAME CHARACTERIZATIONS AND LOWER CONES IN THE

WEIHRAUCH DEGREES

HUGO NOBREGA AND ARNO PAULY

Institute for Logic, Language, and Computation, University of Amsterdam, The Netherlands

Departamento de Ciência da Computação, Universidade Federal do Rio de Janeiro, Brazil
e-mail address: hugonobrega@dcc.ufrj.br

Department of Computer Science, Swansea University, United Kingdom
e-mail address: a.m.pauly@swansea.ac.uk

Abstract. We introduce a parametrized version of the Wadge game for functions and
show that each lower cone in the Weihrauch degrees is characterized by such a game. These
parametrized Wadge games subsume the original Wadge game, the eraser and backtrack
games as well as Semmes’s tree games. In particular, we propose that the lower cones in
the Weihrauch degrees are the answer to Andretta’s question on which classes of functions
admit game characterizations. We then discuss some applications of such parametrized
Wadge games. Using machinery from Weihrauch reducibility theory, we introduce games
characterizing every (transfinite) level of the Baire hierarchy via an iteration of a pruning
derivative on countably branching trees.

1. Introduction

The interest in characterizations of classes of functions in descriptive set theory via infinite
games began with a re-reading of the seminal work of Wadge [Wad83], who introduced a
game in order to analyze a notion of reducibility—Wadge reducibility—between subsets of the
Baire space. In the variant—which by a slight abuse we call the Wadge game—two players,
I and II, are given a partial function f : ⊆ NN → NN and play with perfect information for
ω rounds. In each run of this game, at each round player I first picks a natural number and
player II responds by either picking a natural number or passing, although she must pick
natural numbers at infinitely many rounds. Thus, after ω rounds I and II build elements
x ∈ NN and y ∈ NN, respectively, and II wins the run if and only if x 6∈ dom(f) or f(x) = y.

This research was partially done whilst the authors were visiting fellows at the Isaac Newton Institute for
Mathematical Sciences in the programme ‘Mathematical, Foundational and Computational Aspects of the
Higher Infinite’. The research benefited from the Royal Society International Exchange Grant Infinite games
in logic and Weihrauch degrees. The first author was partially supported by a CAPES Science Without
Borders grant (9625/13-5), and the second author was partially supported by the ERC inVEST (279499)
project. We are grateful to Benedikt Löwe, Luca Motto Ros, Takayuki Kihara and Raphaël Carroy for helpful
and inspiring discussions. The contents of Section 3 of this paper has already appeared in the conference
proceedings paper [NP17].

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(3:11)2019
c© H. Nobrega and A. Pauly
CC© Creative Commons

11:2 H. Nobrega and A. Pauly Vol. 15:3

It is an easy consequence of the original work of Wadge that this game characterizes the
continuous functions in the following sense.

Theorem 1.1. A partial function f : NN → NN is relatively continuous iff player II has a
winning strategy in the Wadge game for f .

By giving player II more freedom in how she builds her sequence y ∈ NN, one can obtain
games characterizing larger classes of functions. For example, in the eraser game (implicit
in [Dup01]) characterizing the Baire class 1 functions, player II is allowed to erase past
moves, the rule being that she is only allowed to erase each position of her output sequence
finitely often. In the backtrack game (implicit in [Van78]) characterizing the functions which
preserve the class of Σ0

2 sets under preimages, player II is allowed to erase all of her past
moves at any given round, the rule in this case being that she only do this finitely many
times.

In his PhD thesis [Sem09], Semmes introduced the tree game characterizing the class of
Borel functions in the Baire space. Player I plays as in the Wadge game and therefore builds
some x ∈ NN after ω rounds, but at each round n player II now plays a finite labeled tree, i.e.,
a pair (Tn, φn) consisting of a finite tree Tn ⊆ N<N and a function φn : Tnr{〈〉} → N, where
〈〉 denotes the empty sequence. The rules are that Tn ⊆ Tn+1 and φn ⊆ φn+1 must hold
for each n, and that the final labeled tree (T, φ) = (

⋃
n∈N Tn,

⋃
n∈N φn) must be an infinite

tree with a unique infinite branch. Player II then wins if the sequence of labels along this
infinite branch is exactly f(x). By providing suitable extra requirements on the structure of
the final tree, Semmes was able to obtain a game characterizing the Baire class 2 functions,
and although this is not done explicitly in [Sem09], it is not difficult to see that restrictions
of the tree game also give his multitape and multitape eraser games from [Sem07], which
respectively characterize the class of functions which preserve Σ0

3 under preimages and the
class of functions for which the preimage of any Σ0

2 set is a Σ0
3 set.

As examples of applications of these games, Semmes found a new proof of a theorem of
Jayne and Rogers characterizing the class of functions which preserve Σ0

2 under preimages
and extended this theorem to the classes characterized by the multitape and multitape
eraser games, by performing a detailed analysis of the corresponding game in each case.

Given the success of such game characterizations, in [And07] Andretta raised the question
of which classes of functions admit a characterization by a suitable game. Significant progress
towards an answer was made by Motto Ros in [Mot11]: Starting from a general definition of a
reduction game, he shows how to construct new games from existing ones in ways that mirror
the typical constructions of classes of functions (e.g., piecewise definitions, composition,
pointwise limits). In particular, Motto Ros’s results show that all the usual subclasses of
the Borel functions studied in descriptive set theory admit game characterizations.

In order to study the classes of functions characterizable by games, we will use the
language of Weihrauch reducibility theory. This reducibility (in its modern form) was
introduced by Gherardi and Marcone [GM09] and Brattka and Gherardi [BG11b, BG11a]
based on earlier work by Weihrauch on a reducibility between sets of functions analogous to
Wadge reducibility [Wei92a, Wei92b].

We will show that game characterizations and Weihrauch degrees correspond closely
to each other. We can thus employ the results and techniques developed for Weihrauch
reducibility to study function classes in descriptive set theory, and vice versa. In particular,
we can use the algebraic structure available for Weihrauch degrees [HP13, BP18] to obtain
game characterizations for derived classes of functions from game characterizations for the

Vol. 15:3 GAME CHARACTERIZATIONS AND LOWER CONES IN THE WEIHRAUCH DEGREES 11:3

original classes, similar to the constructions found by Motto Ros [Mot11]. As a further
feature of our work, we should point out that our results apply to the effective setting
firsthand, and are then lifted to the continuous setting via relativization. They thus follow
the recipe laid out by Moschovakis, e.g., in [Mos09, Section 3I].

While the traditional scope of descriptive set theory is restricted to Polish spaces, their
subsets, and functions between them, these restrictions are immaterial for the approach
presented here. Our results naturally hold for multi-valued functions between represented
spaces. As such, this work is part of a larger development to extend descriptive set theory
to a more general setting, cf., e.g., [dB13, PdB15, Peq15, KP14, Pau14].

After recalling and preparing some notions and results related to Weihrauch reducibility
in Section 2, we introduce our parametrized version of the Wadge game in Section 3 and
discuss applications. In Section 4, we introduce a notion of pruning derivative for countably-
branching trees, and show how this gives rise to games characterizing each (transfinite) level
of the Baire hierarchy.

We will freely use standard concepts and notation from descriptive set theory, referring
to [Kec95] for an introduction.

2. Represented spaces and Weihrauch reducibility

Represented spaces and continuous or computable maps between them form the setting
for computable analysis. The classical reference for computable analysis is the textbook
by Weihrauch [Wei00]; for a comprehensive introduction more in line with the style of this
paper we refer to [Pau16].

A represented space X = (X, δX) is given by a set X and a partial surjection δX : ⊆ NN →
X. We will always consider NN as represented by id, and N as represented by the function
δN(p) = n iff p = 0n1N. Given a represented space X and n ∈ N, Xn is the represented
space of n -tuples represented in the natural way since NN inherits particularly nice tupling
functions p · q of all finite arities from N. The coproduct of a family of represented spaces
{Yx ; x ∈ X} indexed by X is the represented space

∐
x∈XYx composed of pairs (x, y) such

that y ∈ Yx, with the representation given in the natural way, letting a name for (x, y) be a
NN -pair of a name for x and one for y. We denote by X<N the represented space

∐
n∈NXn;

thus N<N can intuitively be seen as a represented space such that σ is named by p iff p
encodes the length |σ| of σ as well as the |σ| elements of σ Finally, XN is the represented
space in which tuples 〈xn〉n∈N are named by infinite tuples composed of a name for each xn

—recall that NN has a countable tupling function p · q : (NN)
N → NN given by ppnqn∈N = p

iff p(pn, kq) = pn(k) for each n, k ∈ N. This tupling function is naturally associated to
ω-many corresponding projections: for each n ∈ N and p ∈ NN, we define (p)n ∈ NN by
(p)n(k) = p(pn, kq).

A (multi-valued) function between represented spaces is just a (multi-valued) function
on the underlying sets. We say that a partial function F : ⊆ NN → NN is a realizer for
a multi-valued function f : ⊆ X ⇒ Y, denoted by F ` f , if δY(F (p)) ∈ f(δX(p)) for all
p ∈ dom(fδX). Then, given a class Λ of partial functions in NN, we say f : ⊆ X⇒ Y is in
(δX, δY)-Λ if it has a realizer in Λ. When δX and Y are clear from the context, we will just
say f is in Λ; thus we have computable, continuous, etc., functions between represented
spaces.

11:4 H. Nobrega and A. Pauly Vol. 15:3

Represented spaces and continuous functions (in the sense just defined) generalize Polish
spaces and continuous functions (in the usual sense). Indeed, let (X, τ) be some Polish space,
and fix a countable dense sequence 〈ai ; i ∈ N〉 and a compatible metric d. Now define δX
by δX(p) = x iff d(ap(i), x) < 2−i holds for all i ∈ N. In other words, we represent a point
by a sequence of basic points converging to it with a prescribed speed. It is a foundational
result in computable analysis that the notion of continuity for the represented space (X, δX)
coincides with that for the Polish space (X, τ).

Definition 2.1. Let f and g be partial multi-valued functions between represented spaces.
We say that f is Weihrauch-reducible to g, in symbols f ≤W g, if there are computable
functions K : ⊆ NN → NN and H : ⊆ NN × NN → NN such that whenever G ` g, the
function F := (p 7→ H(p,G(K(p)))) is a realizer for f . If there are computable functions
K,H : ⊆ NN → NN such that whenever G ` g then HGK ` f , then we say that f is strongly
Weihrauch-reducible to g (f ≤sW f). We write f ≤t

W g and f ≤t
sW g for the variations where

“computable” is replaced with “continuous”.

In this paper, we almost always denote (multi- or single-valued) function composition
by juxtaposition (e.g., as we did for HGK in Definition 2.1). However, because some of the
functions we use have English words for names, for the sake of clarity, when talking about
compositions involving such functions we will use the symbol ◦ to denote composition.

We refer the reader to [BGP17] for a recent comprehensive survey on Weihrauch
reducibility.

A multi-valued function f tightens g or is a tightening of g, denoted by f � g, if
dom(g) ⊆ dom(f) and f(x) ⊆ g(x) whenever x ∈ dom(g), cf. [Wei08, Definition 7]. The
following result illustrates how the notion of tightening is a good tool for expressing concepts
in Weihrauch reducibility theory. First, for any represented space X, let ∆X : X→ X×X be
the total computable function given by ∆X(x) = (x, x)

Proposition 2.2 (Folklore; cf., e.g., [Pau12, Chapter 4]). Let f : ⊆ X⇒ Y and g : ⊆ Z⇒W.

(1) The following are equivalent:
(a) f ≤sW g (f ≤t

sW g)
(b) there exist computable (continuous) k : ⊆ X ⇒ Z and h : ⊆W ⇒ Y such that

f � hgk.
(2) The following are equivalent:

(a) f ≤W g (f ≤t
W g);

(b) there exist computable (continuous) k : ⊆ X⇒ Z and h : ⊆ X×W⇒ Y such that
f � h(idX × gk)∆X;

(c) there exist computable (continuous) k : ⊆ X⇒ Z and h : ⊆ X×W⇒ Y such that
f = h(idX × gk)∆X.

Although the Weihrauch degrees form a very rich algebraic structure (cf., e.g., [BGH15,
BP18, HP13] for surveys covering this aspect of the Weihrauch lattice), we only need two
operations on the Weihrauch degrees, parallelization and sequential composition. Given a

map f : ⊆ X⇒ Y between represented spaces, its parallelization is the map f̂ : ⊆ XN ⇒ YN
given by 〈yn〉n∈N ∈ f̂(〈xn〉n∈N) iff yn ∈ f(xn) for each n ∈ N. We say that f is parallelizable

if f ≡W f̂ . It is not hard to see that parallelization is a closure operator in the Weihrauch
degrees. Rather than defining the sequential composition operator ? explicitly as in [BP18],
we will make use of the following characterization:

Vol. 15:3 GAME CHARACTERIZATIONS AND LOWER CONES IN THE WEIHRAUCH DEGREES 11:5

Theorem 2.3 (Brattka & Pauly [BP18]). f ? g ≡W max
≤W

{f ′g′ ; f ′ ≤W f ∧ g′ ≤W g}.

2.1. Transparent cylinders. In this section we study properties of transparent cylinders,
which will play a central role in our parametrized version of the Wadge game.

Definition 2.4 (Brattka & Gherardi [BG11b]). Let f : ⊆ X⇒ Y. We call f

(1) a cylinder if idNN × f ≤sW f ;
(2) transparent iff for any computable or continuous g : ⊆ Y⇒ Y there is a computable or

continuous, respectively, fg : ⊆ X⇒ X such that ffg � gf .

The transparent (single-valued) functions on the Baire space were studied by de Brecht
under the name jump operator in [dB14]. One of the reasons for their relevance is that they
induce endofunctors on the category of represented spaces, which in turn can characterize
function classes in DST [PdB13]. The term transparent was coined in [BGM12]. Our
extension of the concept to multi-valued functions between represented spaces is rather
straightforward, but requires the use of the notion of tightening. Note that if f : ⊆ X⇒ Y
is transparent, then for every y ∈ Y there is some x ∈ dom(f) with f(x) = {y}, i.e., f is
slim in the terminology of [BGM12, Definition 2.7].

Two examples of transparent cylinders which will be relevant in what follows are the
functions lim and lim∆ : ⊆ NN → NN defined by letting lim(p) = limn∈N(p)n and letting
lim∆(p) be the restriction of lim to the domain {p ∈ NN ; ∃n ∈ N∀k ≥ n((p)k = (p)n)}. To
see a further example, related to Semmes’s tree game characterizing the Borel functions, one
first needs to define the appropriate represented space of labeled trees. For this, it is best to
work in a quotient space of labeled trees under bisimilarity. The resulting quotient space
can be thought of as the space of labeled trees in which the order of the subtrees rooted at
the children of a node, and possible repetitions among these subtrees, are abstracted away.
Then the map Prune, which removes from (any representative of the equivalence class of) a
labeled tree which has one infinite branch all of the nodes which are not part of that infinite
branch, is a transparent cylinder. This idea will be developed in full in Section 4 below.

Proposition 2.5. Let f : ⊆ X⇒ Y and g : ⊆ Y⇒ Z be cylinders. If f is transparent then
gf is a cylinder and gf ≡W g ? f . Furthermore, if g is also transparent then so is gf .

Proof. (gf is a cylinder) As g is a cylinder, there are computable h : ⊆ Z⇒ NN × Z and k :
⊆ NN × Y⇒ Y such that idNN×g � hgk. Likewise, there are computable h′ : ⊆ Y⇒ NN×Y
and k′ : ⊆ NN × X ⇒ X such that idNN × f � h′fk′. As composition respects tightening
[PZ13, Lemma 2.4(1b)], we conclude that (idNN × g)(idNN × f) = idNN × (gf) � hgkh′fk′.
Note that kh′ : ⊆ Y⇒ Y is computable, and as f is transparent, there is some computable
fkh′ : ⊆ X ⇒ X with kh′f � ffkh′ . But then idNN × (gf) � hgkh′fk′ � hgffkh′k

′, thus h
and fkh′k

′ witness that idNN × (gf) ≤sW gf , i.e., gf is a cylinder.
(gf ≡W g ? f) The direction gf ≤W g ? f is immediate. Let f ′ and g′ be such that

f ′ ≤W f , g′ ≤W g, and g′f ′ is defined. We need to show that g′f ′ ≤W gf . As g and f are
cylinders, we find that already g′ ≤sW g and f ′ ≤sW f . Let h, k witness the former and
h′, k′ the latter. We conclude hgkh′fk′ � g′f ′. As above, there then is some computable
fkh′ with kh′f � ffkh′ . Then h and fkh′k

′ witness that g′f ′ ≤sW gf .
Now suppose that g is also transparent.
(gf is transparent) Let h : ⊆ Z⇒ Z be computable. By assumption that g is transparent,

there is some computable gh : ⊆ Y⇒ Y such that ggh � hg. Then there is some computable

11:6 H. Nobrega and A. Pauly Vol. 15:3

fh : ⊆ X⇒ X with ffh � ghf . As composition respects tightening [PZ13, Lemma 2.4.1.b],
we find that hgf � gghf � gffh, which is what we need.

Definition 2.6. Given a function f : ⊆ A ⇒ B and C ⊆ B, the corestriction of f to
C, denoted f�C, is the restriction of f to domain {x ∈ dom(f) ; f(x) ⊆ C}. This notion
extends to functions between represented spaces in a natural way. A represented space
(X, δX) is a subspace of (Y, δY), denoted (X, δX) ⊆ (Y, δY), if X ⊆ Y and δX = δY �X.

Proposition 2.7. If f : ⊆ X⇒ Y and Z ⊆W ⊆ Y, then f�Z ≤sW f�W.

Proposition 2.8. Any corestriction of a transparent map is transparent.

Proof. Let f : ⊆ X ⇒ Y be transparent, and let Z be a subspace of Y. Let g : ⊆ Z ⇒ Z
be computable. Then g : ⊆ Y⇒ Y, and therefore there exists a computable fg : ⊆ X⇒ X
such that ffg � gf . Note that dom(gf) ⊆ dom((f�Z)fg). Indeed, if x ∈ dom(gf), then
ffg(x) ⊆ gf(x) ⊆ Z, so fg(x) ⊆ dom(f�Z) and therefore x ∈ dom((f�Z)fg) as desired.
From this it immediately follows that ((f�Z)fg)�dom(gf) = (ffg)�dom(gf), from which we
conclude (f�Z)fg � g(f�Z).

Theorem 2.9. Any multi-valued function between represented spaces is strongly-Weihrauch-
equivalent to a multi-valued function on NN.

Proof. Let f : ⊆ X ⇒ Y be given. Define f ′ : ⊆ NN ⇒ NN by dom(f ′) = dom(fδX) and
q ∈ f ′(p) iff δY(q) ∈ fδX(p). To see that f ≡sW f ′, first suppose F ` f , i.e., for any
p ∈ dom(fδX) we have δYF (p) ∈ fδX(p). Then F (p) ∈ f ′(p), so F ` f ′. Conversely,
suppose for any p ∈ dom(f ′) = dom(fδX) we have F (p) ∈ f ′(p). But this happens iff
δYF (p) ∈ fδX(p), i.e., F ` f .

Definition 2.10. The space M(X,Y) of the strongly continuous functions between repre-
sented spaces X and Y is defined by letting p be a name for f iff p = 0n1q and, letting M
be the nth Turing machine, we have

(1) for every r ∈ dom(fδX) and every r′ ∈ NN we have that M computes a δY-name for an
element of fδX(r) when given pr, r′q as input and q as oracle;

(2) for every x ∈ dom(f) and every y ∈ f(x) there exist a δX-name r for x and an r′ ∈ NN
such that M computes a δY-name for y when given pr, r′q as input and q as oracle;

(3) for every x ∈ Xr dom(f), every δX-name r for x, and every r′ ∈ NN, we have that M
does not compute an element in dom(δY) when given pr, r′q as input and q as oracle.

In this case we also say that f is strongly continuous, and that M strongly computes f with
oracle p. As expected, if the oracle q ∈ NN in the definition above is computable then f is
called strongly computable.

Theorem 2.11 (Brattka & Pauly [BP18, Lemma 13]). Every computable or continuous
f : ⊆ X ⇒ Y has a strongly computable or strongly continuous, respectively, tightening
g : ⊆ X⇒ Y.

Proof. We can assign to each Turing machine M and oracle q a function gM,q : ⊆ X ⇒ Y
given by dom(gM,q) = {δX(r) ; M produces an element of dom(δY) when run on input r with
oracle q} and gM,q(x) = {δY(q′) ; there exists a δX-name r for x such that q′ is the output of
M when run with input r and oracle q}. Now, if M with oracle q computes a realizer for
f : ⊆ X⇒ Y, then it immediately follows that gM,q � f . Finally, to see that gM,q is strongly
continuous or strongly computable (in case q is computable), let M ′ be the Turing machine

Vol. 15:3 GAME CHARACTERIZATIONS AND LOWER CONES IN THE WEIHRAUCH DEGREES 11:7

which, on input pr, r′q and with oracle q, simply runs the Turing machine M on input r and
oracle q. We now have that M ′ strongly computes gM,q with oracle q.

Theorem 2.12 (Brattka & Pauly, implicit in [BP18, Section 3.2]). Every multi-valued
function f is strongly Weihrauch-equivalent to some transparent cylinder f tc, which can
furthermore be taken to have codomain NN.

Proof. By Theorem 2.9, it is enough to prove the result for f : ⊆ NN ⇒ NN. Let f tc :
⊆M(NN,NN)× NN ⇒ NN be given by f tc(h, x) = hf(x). That f tc ≤sW f holds is of
course immediate, and conversely we have f ≤sW f tc since idNN has a computable name in
M(NN,NN), so the function K(x) = (idNN , x) is computable and f = f tcK. To see that f tc is
a cylinder, define computable K : ⊆ NN × (M(NN,NN)× NN)→ NN and H : ⊆ NN × NN →
NN × NN by K(p, (h, x)) = (hp, x) where hp(y) = pp, h(y)q and H(pp, yq) = (p, y). Then
Hf tcK(p, (h, x)) = H(hpf(x)) = H(pp, f(x)q) = (p, f(x)), so idNN × f ≤sW f tc. Since
f ≡sW f tc, this suffices. Finally, to see that f tc is transparent, let g : ⊆ NN ⇒ NN
be continuous or computable. Define g′ : ⊆M(NN,NN)× NN ⇒ M(NN,NN) × NN by
g′(h, x) = (gh, x). Note that g′ is continuous or computable, respectively, since g is.
Furthermore, we have f tcg′(h, x) = f tc(gh, x) = ghf(x) = gf tc(h, x), i.e., f tcg′ = gf tc as
desired.

Definition 2.13. We say that a represented space X (strongly) encodes NN if any f :
⊆ NN ⇒ NN is (strongly) Weihrauch-equivalent to some f ′ : ⊆ NN ⇒ X.

Note that if X has a subspace which is computably isomorphic to NN, then X strongly
encodes NN.

Theorem 2.14. Let f : ⊆ X ⇒ Y be a transparent cylinder. If Z ⊆ Y (strongly) encodes
NN, then f�Z is transparent and (strongly) Weihrauch-equivalent to f . In the strong case,
f�Z is also a cylinder.

Proof. Note that f�Z ≤sW f holds for any f and Z, and if f is transparent then so is f�Z.
Now, by Theorem 2.9, there is some g : ⊆ NN ⇒ NN which is strongly Weihrauch-equivalent
to f . Therefore, by assumption, there exists g′ : ⊆ NN ⇒ Z such that g′ is (strongly)
Weihrauch-equivalent to f . Since f is a transparent cylinder, there exists a computable
h : ⊆ NN → NN such that g′ � fh. Hence, since the codomain of g′ is Z, it follows that
g′ � (f�Z)h, i.e., g′ ≤sW f�Z and therefore f is (strongly) Weihrauch-reducible to f�Z.
Finally, if Z strongly encodes NN, then we have idNN × f�Z ≤sW idNN × f ≤sW f ≡sW f�Z,
so f�Z is a cylinder.

3. Parametrized Wadge games

3.1. The definition. In order to define our parametrization of the Wadge game, first we
need the following notion, which is just the dual notion to being an admissible representation
as in [Sch02].

Definition 3.1. A probe for Y is a computable partial function π : ⊆ Y → NN such that
for every computable or continuous f : ⊆ Y ⇒ NN there is a computable or continuous,
respectively, e : ⊆ Y⇒ Y such that πe � f .

11:8 H. Nobrega and A. Pauly Vol. 15:3

Note that a probe is always transparent, and that the partial inverse of a computable
embedding from NN into Y is always a probe. The following definition generalizes the
definition of a reduction game from [Mot11, Subsection 3.1], which is recovered as the special
case in which all involved spaces are NN, the map π is the identity on NN, and Ξ is a
single-valued function.

Definition 3.2. Let π : ⊆ Y → NN be a probe and Ξ : ⊆ X ⇒ Y. The Wadge game
parametrized by Ξ and π, in short the (Ξ, π)-Wadge game, is played by two players, I and II,
who take turns in infinitely many rounds. At each round of a run of the game for a given
function f : ⊆ Z⇒W, player I first plays a natural number and player II then either plays
a natural number or passes, as long as she plays natural numbers infinitely often. Therefore,
after ω rounds player I builds x ∈ NN and II builds y ∈ NN, and player II wins the run of
the game if x 6∈ dom(fδZ), or y ∈ dom(δWπΞδX) and δWπΞδX(y) ⊆ fδZ(x).

Thus, the (Ξ, π)-Wadge game is like the Wadge game but, instead of player I building
an element x ∈ dom(f) and player II trying to build f(x), now player I builds a name for
some element x ∈ dom(f) and player II tries to build a name for some element y ∈ Y which
is transformed by πΞ into a name for an element in f(x). Intuitively, the idea is that the
main transformation is done by Ξ, but because fixing a parametrized game entails fixing Ξ,
in order for a fixed game to be able to deal with functions between different represented
spaces there needs to be some map which will work as an intermediary between the target
space of Ξ and the target space, say W, of the function in question. This role will be played
by the computable map δWπ.

It is easy to see that, restricted to single-valued functions on NN, the original Wadge
game is the (idNN , idNN)-Wadge game, the eraser game is the (lim, idNN)-Wadge game, and
the backtrack game is the (lim∆, idNN)-Wadge game. Semmes’s tree game for the Borel
functions is the (Prune,Label)-Wadge game, where Label is the function extracting the
infinite running label from (any representative of the equivalence class of) a pruned labeled
tree consisting of exactly one infinite branch. The details of this last example, including the
definitions of the represented spaces involved, will be given in Section 4 below.

Theorem 3.3. Let Ξ, π, and f be as in Definition 3.2, and furthermore suppose Ξ is a
transparent cylinder. Then player II has a (computable) winning strategy in the (Ξ, π)-Wadge
game for f iff f ≤t

W Ξ (f ≤W Ξ).

Proof. (⇒) Any (computable) strategy for player II gives rise to a continuous (computable)
function k : ⊆ NN → NN. If the strategy is winning, then δWπΞδXk � fδZ, which implies
δWπΞδXkδ

−1
Z � fδZδ

−1
Z = f . Thus the continuous (computable) maps δWπ and δXkδ

−1
Z

witness that f ≤t
sW Ξ (f ≤sW Ξ).

(⇐) As Ξ is a cylinder, if f ≤t
W Ξ (f ≤W Ξ), then already f ≤t

sW Ξ (f ≤sW Ξ). Thus,

there are continuous (computable) h, k with hΞk � f . As δWδ
−1
W = idW, we find that

δWδ
−1
W hΞk � f . Now δ−1

W h : ⊆ Y ⇒ NN is continuous (computable), so by definition of a
probe, there is some continuous (computable) e : ⊆ Y ⇒ Y with δWπeΞk � f . As Ξ is
transparent, there is some continuous (computable) g with eΞ � Ξg, thus δWπΞgk � f . As
gk : ⊆ Z ⇒ X is continuous (computable), it has some (continuous) computable realizer
K : ⊆ NN → NN. By Theorem 1.1, player II has a winning strategy in the Wadge game for
K, and it is easy to see that this strategy also wins the (Ξ, π)-Wadge game for f for her.

Vol. 15:3 GAME CHARACTERIZATIONS AND LOWER CONES IN THE WEIHRAUCH DEGREES 11:9

Corollary 3.4. Let Ξ and Ξ′ be transparent cylinders. If the (Ξ, π)-Wadge game char-
acterizes the class Λ and the (Ξ′, π′)-Wadge game characterizes the class Λ′, then the
(Ξ′Ξ, π′)-Wadge game characterizes the class Λ′Λ := {fg ; f ∈ Λ′ ∧ g ∈ Λ}.
Proof. If player II has a (computable) winning strategy in the (Ξ′Ξ, π′)-Wadge game for
f : ⊆ A⇒ B, then by Theorem 3.3 we have f ≤t

W Ξ′Ξ (f ≤W Ξ′Ξ). Thus, by Proposition 2.2,
there exist continuous (computable) k : ⊆ A⇒ X and h : ⊆ A× Z⇒ B such that h(idA ×
Ξ′Ξk)∆A = f . Now let g′ = h(idA × Ξ′) and g = (idA × Ξk)∆A. Then f = g′g, and since
g′ ≤t

W Ξ′ (g′ ≤W Ξ′) and g ≤t
W Ξ (g ≤W Ξ), we have g′ ∈ Λ′ and g ∈ Λ, as desired.

Conversely, if g = f ′f with f ′ ∈ Λ′ and f ∈ Λ, then by Theorem 3.3 we have f ′ ≤W Ξ′

and f ≤W Ξ. Now, by Proposition 2.5, it follows that f ′f ≤W Ξ′Ξ. Finally, since by
Proposition 2.5 we have that Ξ′Ξ is a transparent cylinder, again by Theorem 3.3 it follows
that II has a winning strategy in the (Ξ′Ξ, π′)-Wadge game for g.

We thus get game characterizations of many classes of functions, including, e.g., ones
not covered by Motto Ros’s constructions in [Mot11]. For example, consider the function
Sort : 2N → 2N given by Sort(p) = 0n1N if p contains exactly n occurrences of 0 and
Sort(p) = 0N otherwise. This map was introduced by Carroy in [Car14] (where it was
called count0) and studied by Neumann and Pauly in [NP18]. From the results in [NP18]
it follows that the class Λ of total functions on NN which are Weihrauch-reducible to Sort
is neither the class of pointwise limits of functions in some other class, nor the class of
Γ-measurable functions for any boldface pointclass Γ of subsets of NN closed under countable
unions and finite intersections. By Theorem 2.12, Sort is Weihrauch-equivalent to some
transparent cylinder Sorttc with codomain NN. Thus, by Theorem 3.3, Λ is characterized by
the (Sorttc, idNN)-Wadge game.

The converse of Theorem 3.3 is almost true, as well:

Proposition 3.5. If the (Ξ, π)-Wadge game characterizes a lower cone in the Weihrauch
degrees, then it is the lower cone of πΞ, and πΞ is a transparent cylinder.

Proof. Similar to the corresponding observation in Theorem 3.3, note that whenever player
II has a (computable) winning strategy in the (Ξ, π)-Wadge game for f , this induces a
(strong) Weihrauch-reduction f ≤t

sW πΞ (f ≤sW πΞ). Conversely, by simply copying player
I ’s moves, player II wins the (Ξ, π)-Wadge game for πΞ. This establishes the first claim.
Now, as idNN × (πΞ) ≤W πΞ, the assumption that the (Ξ, π)-Wadge game characterize a
lower cone in the Weihrauch degrees implies that player II wins the (Ξ, π)-Wadge game for
idNN × (πΞ). Thus, idNN × (πΞ) ≤sW πΞ follows, and we find πΞ to be a cylinder. For the
remaining claim that πΞ is transparent, let g : ⊆ NN ⇒ NN be continuous (computable).
Then gπΞ ≤t

W πΞ (gπΞ ≤W πΞ), hence player II has a (computable) winning strategy
in the (Ξ, π)-Wadge game for gπΞ. This strategy induces some continuous (computable)
H : ⊆ NN → NN with gπΞδX � πΞδXH. Thus, δXHδ

−1
X is the desired witness.

3.2. Using game characterizations. One main advantage of having game characteri-
zations of some properties is realized together with determinacy: either by choosing our
set-theoretic axioms accordingly, or by restricting to simple cases and invoking, e.g., Borel
determinacy, we can conclude that if the property is false, i.e., player II has no winning
strategy, then player I has a winning strategy. Thus, player I ’s winning strategies serve
as explicit witnesses of the failure of a property. Applying this line of reasoning to our
parametrized Wadge games, we obtain the following corollaries of Theorem 3.3:

11:10 H. Nobrega and A. Pauly Vol. 15:3

Corollary 3.6 (ZFC). Let Ξ be a transparent cylinder and π a probe such that πΞ is
single-valued and dom(πΞ) is Borel. Then for any f : X⇒ Y such that dom(δX) and f(x)
are Borel for any x ∈ X, we find that f �t

W Ξ iff player I has a winning strategy in the
(Ξ, π)-Wadge game for f .

Corollary 3.7 (ZF + DC + AD). Let Ξ be a transparent cylinder and π a probe. Then
f �t

W Ξ iff player I has a winning strategy in the (Ξ, π)-Wadge game for f .

Unfortunately, as determinacy fails in a computable setting (cf., e.g., [CR92, LRP15]),
we do not retain the computable counterparts. More generally, we lack a clear grasp on the
connections between winning strategies of player I in the (Ξ, π)-Wadge game for a function
f and positive witnesses of the fact that f is not in the class characterized by the game.
As pointed out by Carroy and Louveau in private communication, this is true even for the
original Wadge game for functions, i.e., the (idNN , idNN)-Wadge game. Here we already have
a notion of positive witnesses for discontinuity, viz. points of discontinuity, and can therefore
make this discussion mathematically precise:

Question 3.8. Let a point of discontinuity of a function f : NN → NN be given as a sequence
(xn)n∈N, a point x ∈ NN, and σ ∈ N<N with σ ⊆ f(x) such that ∀n(d(xn, x) < 2−n ∧ σ 6⊆
f(xn)). Let DiscPoint be the multi-valued map that takes as input a winning strategy for
player I in the (idNN , idNN)-Wadge game for some function f : NN → NN, and outputs a point
of discontinuity for that function. Is DiscPoint computable? More generally, what is the
Weihrauch degree of DiscPoint?

We can somewhat restrict the range of potential answers for the preceding question:

Theorem 3.9. Let player I have a computable winning strategy in the (idNN , idNN)-Wadge
game for f : NN → NN. Then f has a computable point of discontinuity.

The proof of the theorem will require some recursion theoretic preparations. Given
p, q ∈ NN, let [p | q] ∈ NN be defined as [p | q] = 0q(0)(p(0) + 1)0q(1)(p(1) + 1)0q(2) . . ., i.e.,
[p | q] increases each number in p by 1, and then intersperses zeros between the entries, with
the number of repetitions being provided by q. Now, given r ∈ NN and some A ⊆ NN, let
A+r := {[p | q] ; p ∈ A ∧ ∀n ∈ N(q(n) ≥ r(n))}.

The proof of the following lemma is based on helpful comments by Takayuki Kihara in
personal communication.

Lemma 3.10. Let F : NN → NN be computable, r ∈ NN, A,B ⊆ NN, B 6= ∅ be such that
F [B+r] ⊆ A and A is Σ0

2. Then A contains a computable point.

Proof. Let A =
⋃
n∈NQn with Π0

1 -sets Qn. For the sake of a contradiction, assume that A
and thus all Qn contain no computable points. Pick some p ∈ B.

As F (0N) is computable, we find F (0N) /∈ Q0. As Q0 is Π0
1 and F computable, there is

some m0 ≥ r(0) such that F [0m0NN]∩Q0 = ∅. Next, consider F (0m0p(0)0N). Again, this is
a computable point, hence there is some m1 ≥ r(1) such that F [0m0p(0)0m1NN] ∩Q1 = ∅.
We proceed in this manner to choose all mi, and then define q ∈ NN by q(i) = mi. Note that
q ≥ r. Then [p | q] ∈ B+r, but F ([p | q]) /∈ A by construction, hence we derive the desired
contradiction and conclude that A contains a computable point.

Proof of Theorem 3.9. Let us assume that player I has a winning strategy in the (id, id)-
Wadge game for f : NN → NN. We describe how player II can coax player I into playing
a point of discontinuity of f . Player II starts passing, causing player I to produce longer

Vol. 15:3 GAME CHARACTERIZATIONS AND LOWER CONES IN THE WEIHRAUCH DEGREES 11:11

and longer prefixes of some p ∈ NN. If player I ever produces a prefix p≤n0 such that
∃k0 f [p≤nNN] ⊆ k0NN, then player II will play k0, and then goes back to passing. If
subsequently, there is some n1, such that ∃k1 f [p≤n1NN] ⊆ k0k1NN, then player II plays
k1, and starts passing again, etc. If f is continuous at p, then player II will play a correct
response to f , hence contradict the assumption that player I is following a winning strategy.
Thus, p has to be a point of discontinuity of f .

Note that if player II passes even more than necessary, this does not change the argument
at all. Thus, we find that there is some non-empty set B and r ∈ NN such that the computable
response function S : NN → NN maps B+r into the set of points of discontinuity of f . The
latter is a Σ0

2 -set, hence Lemma 3.10 implies that it contains a computable point.

A more convenient way of exploiting determinacy of the (Ξ, π)-Wadge games could
perhaps be achieved if a more symmetric version were found. In this, we could hope for a
dual principle S, where for any f either f ≤cW Ξ or S ≤cW f holds. More generally, we hope
that a better understanding of the (Ξ, π)-Wadge games would lead to structural results about
the Weihrauch lattice, similar to the results obtained by Carroy on the strong Weihrauch
reducibility [Car13].

3.3. Generalized Wadge reducibility. As mentioned in the introduction, the Wadge
game was introduced not to characterize continuous functions, but in order to reason about
a reducibility between sets. Given A,B ⊆ NN, we say that A is Wadge-reducible to B, in
symbols A ≤W B, if there exists a continuous F : NN → NN such that F−1[B] = A (we use
the notation ≤W instead of the more established ≤W in order to help avoid confusion with
Weihrauch reducibility, ≤W). Equivalently, we could consider the multi-valued total function
B
A : NN ⇒ NN defined by B

A (x) = B if x ∈ A and B
A (x) = (NNrB) if x /∈ A. It is easy to see

that we have A ≤W B iff B
A is continuous. It is a famous structural result due to Wadge

(using Borel determinacy) that for any Borel A,B ⊆ NN, either A ≤W B or NNrB ≤W A.
In particular, the Wadge hierarchy on the Borel sets is a strict weak order of width 2.1

Both definitions generalize in a natural way to the case where A ⊆ X and B ⊆ Y
for represented spaces X, Y: A ≤′W B iff there exists a continuous f : X → Y such that

A = f−1[B], and B
A : X⇒ Y is defined by letting B

A (x) = B, if x ∈ A, and B
A (x) = Y rB,

otherwise. It is easy to see that if A ≤′W , then B
A is continuous, since if f : X→ Y is such that

A = f−1[B], then any realizer of f also realizes B
A . However, since not every continuous multi-

valued function has a continuous uniformization, the converse does not hold in general. As
noted, e.g., by Hertling [Her96], the relation ≤′W restricted to X = Y = R already introduces
infinite antichains in the resulting degree structure, and Ikegami showed that in fact the
partial order (℘(N),⊆fin) can be embedded into that degree structure [Ike10, Theorem 5.1.2].
The generalization of B

A was proposed by Pequignot [Peq15] as an alternative2.
It is a natural variation to replace continuous in the definition of Wadge reducibility

by some other class of functions (ideally one closed under composition). Motto Ros has
shown that for the typical candidates of more restrictive classes of functions, the resulting

1A relation R is a strict weak order on a set X if there exists some ordinal number α and a partition
〈Xβ ; β < α〉 of X such that x R y holds iff x ∈ Xβ , y ∈ Xγ , and β < γ. The width of R is the supremum of
the cardinalities of the parts in the partition.

2While Pequignot only introduces the notion for second countable T0 spaces, the extension to all represented
spaces is immediate. Note that one needs to take into account that for general represented spaces, the Borel
sets can show unfamiliar properties, e.g., even singletons can fail to be Borel (cf. also [SS15, SS14, Hoy17]).

11:12 H. Nobrega and A. Pauly Vol. 15:3

degree structures will not share the nice properties of the standard Wadge degrees (they
are bad) [MR14]. Larger classes of functions as reduction witnesses have been explored by
Motto Ros, Schlicht, and Selivanov [MRSS15] in the setting of quasi-Polish spaces—using
the generalization of the first definition of the reduction. Here, we explore the second
generalization; thus, we define A ≤W B iff B

A is continuous.

Definition 3.11. Given a multi-valued function Ξ and A ⊆ X, B ⊆ Y for represented
spaces X and Y, let A ≤Ξ B iff B

A ≤
t
W Ξ.

Observation 3.12. If Ξ ? Ξ ≡W Ξ, then ≤Ξ is a quasiorder.

The following partially generalizes [Mot11, Theorem 6.10]:

Theorem 3.13. Let A ⊆ X and B ⊆ Y, let Ξ : U ⇒ V be a transparent cylinder, and let
π : ⊆ Y→ NN be a probe such that the (Ξ, π)-Wadge game for B

A is determined. Then either

A ≤Ξ B or B ≤W NNrA.

Proof. If player II has a winning strategy in the (Ξ, π)-Wadge game for B
A , then by Theo-

rem 3.3, we find that B
A ≤

t
W Ξ, hence A ≤Ξ B. Otherwise, player I has a winning strategy

in that game. This winning strategy induces a continuous function s : NN → NN, such that
if player II plays y ∈ NN, then player I plays s(y) ∈ NN. As Ξ is a transparent cylinder
and π a probe, since idNN ≤W Ξ, by Theorem 3.3 player II has a winning strategy in the
(Ξ, π)-Wadge game for idNN . This strategy induces a continuous function t : ⊆ NN → NN
such that πΞδXt � idNN , and since idNN is total and single-valued, we have that t is total
and πΞδXt = idNN Now we consider st : NN → NN. If δZ(x) ∈ A, then if player II plays t(x),
player I needs to play some s(t(x)) such that δW(s(t(x))) /∈ B. Likewise, if δZ(x) /∈ A, then
for player I to win, it needs to be the case that δW(s(t(x))) ∈ B. Thus, st is a continuous
realizer of B

NNrA , and B ≤W NNrA follows.

Corollary 3.14 (ZF + DC + AD). Suppose Ξ ? Ξ ≡W Ξ. Then <Ξ is strict weak order of
width at most 2.

In [Mot09], in a different formalism, Motto Ros has identified sufficient conditions on
a general reduction to ensure that its degree structure is equivalent to the Wadge degrees.
We leave for future work the task of determining precisely for which Ξ the degree structure
of <Ξ (restricted to subsets of NN) is equivalent to the Wadge degrees, and which other
structure types are realizable.

4. Games for functions of a fixed Baire class

4.1. Spaces of trees. An unlabeled tree, or simply tree, is a subset of N<N closed under the
operation of taking initial segments. We will typically denote trees by the letters T, S, U
with or without sub- or superscripts. Given a tree T and σ ∈ N<N, we denote

(1) Conc(T, σ) := {τ ∈ N<N ; σ_τ ∈ T}
(2) Ext(T, σ) := {τ ∈ T ; σ ⊆ τ}

We call a tree linear if each of its nodes has at most one child, finitely branching if
each of its nodes has only finitely many children, and pruned if each of its nodes has at
least one child. Given a tree T and σ ∈ T we define the rank of σ in T , denoted by rkT (σ),
by the recursion rkT (σ) := sup{rkT (τ) + 1 ; σ ⊂ τ ∈ T}, if σ is in the wellfounded part of

Vol. 15:3 GAME CHARACTERIZATIONS AND LOWER CONES IN THE WEIHRAUCH DEGREES 11:13

T , and rkT (σ) := ∞ otherwise. By letting ∞ > α whenever α is a countable ordinal and
∞ + n = ∞ for all n ∈ N, we get rkT (σ) = sup{rkT (τ) + 1 ; σ ⊂ τ ∈ T} in either case.
Furthermore, if σ ⊂ τ ∈ T and |τ | ≥ |σ|+ n, then rkT (σ) ≥ rkT (τ) + n. The rank of T is
rkT (〈〉), if T 6= ∅, or 0 if T = ∅.

Given s ∈ N≤N with |s| > 0, let the left shift of s, denoted by shift(s), be the unique
t ∈ N≤N such that s = 〈s(0)〉_t. Given p ∈ NN and σ ∈ N<N, we say that σ is a path through
p if p(0) 6= 0 and recursively shift(σ) is a path through (shift(p))σ(0) in case σ 6= 〈〉. Let UT
be the space of unlabeled trees represented by the total function δUT given by

δUT(p) := {σ ∈ N<N ; σ is a path through p}.
A labeled tree is a pair (T, ϕ) where T is a tree, called the domain of (T, ϕ), and

ϕ : Tr{〈〉} → N is called the labeling function of (T, ϕ). We typically denote labeled trees
by the letter Υ, with or without sub- or superscripts. A labeled tree Υ is a subtree of a
labeled tree Υ′, denoted Υ ⊆ Υ′, if the domain of Υ is a subset of the domain of Υ′ and
the labeling function of Υ is a restriction of that of Υ′. It is not hard to see that there
exist a computable enumeration eLT : N→ LT of all finite labeled trees and a computable
function size : N→ N such that eLT(m) ⊂ eLT(n) implies m < n, and such that eLT(n) has
exactly size(n) nodes. We will in general overload notation from unlabeled to labeled trees;
whenever some such notation is used without prior introduction, the intended meaning will
be intuitive. For example, for Υ = (T, ϕ) we will write σ ∈ Υ to mean σ ∈ T , or rkΥ(σ)
instead of rkT (σ), etc.

If σ 6= 〈〉 is a path through p, then its label according to p is p(σ(0))− 1, if |σ| = 1, or
the label of shift(σ) according to (shift(p))σ(0), otherwise. Let LT be the space of labeled
trees represented by the total function δLT given by δLT(p) = (δUT(p), ϕ), where ϕ(σ) is the
label of σ according to p.

Given labeled trees Υ = (T, ϕ) and Υ′ = (T ′, ϕ′), a relation B ⊆ T × T ′ is called a
bisimulation between Υ and Υ′ in case σ B τ implies |σ| = |τ | and:

ϕ(σ) = ϕ′(τ) (label)

∀σ′ ∈ T (σ ⊂ σ′ ⇒ ∃τ ′ ∈ T ′(τ ⊂ τ ′ ∧ σ′ B τ ′)) (forth)

∀τ ′ ∈ T ′ (τ ⊂ τ ′ ⇒ ∃σ′ ∈ T (σ ⊂ σ′ ∧ σ′ B τ ′)) (back)

|σ| = `+ 1 ⇒ σ�` B τ�` (parent)

It is easily seen that the union of any family of bisimulations between given labeled trees
is also a bisimulation between those trees. Therefore, between any pair of labeled trees Υ
and Υ′ there always exists a largest bisimulation, denoted �Υ,Υ′ . We say Υ and Υ′ are
bisimilar, denoted Υ� Υ′, in case �Υ,Υ′ is nonempty. A particular case of a bisimulation
between Υ = (T, ϕ) and Υ′ = (T ′, ϕ′) is an isomorphism between those trees, i.e., a bijection
ι : T → T ′ satisfying, for any σ, τ ∈ T :

(1) σ ⊆ τ iff ι(σ) ⊆ ι(τ),
(2) |σ| = |ι(σ)|, and
(3) ϕ(σ) = ϕ′(ι(σ)).

The trees Υ and Υ′ are isomorphic, denoted Υ ' Υ′, if there exists an isomorphism between
them.

Lemma 4.1. If B ⊆ Υ×Υ′ is a bisimulation and σ B τ holds, then rkΥ(σ) = rkΥ′(τ).

11:14 H. Nobrega and A. Pauly Vol. 15:3

Proof. If rkΥ(σ) =∞, i.e., if σ is on an infinite branch of Υ, then it is easy to see that τ is
on an infinite branch of Υ′ and therefore rkΥ′(τ) =∞ as well. By the same argument, we
have that if rkΥ′(τ) =∞ then rkΥ(σ) =∞. If σ ∈WF(Υ), then we proceed by induction on
rkΥ(σ). For the base case, note that rkΥ(σ) = 0 iff σ is a leaf of Υ, and in this case σ B τ
implies that τ is also a leaf of Υ′ and therefore also has rank 0. Now suppose the result holds
for every node of rank < rkΥ(σ). For each β < rkΥ(σ) there exists some descendant σ′ of σ
in Υ such that rkΥ(σ′) = β. Since B is a bisimulation, there exists a descendant τ ′ of τ in
Υ′ such that σ′ B τ ′. By induction hypothesis we have rkΥ′(τ

′) = β, and since β < rkΥ(σ)
was arbitrary we have rkΥ′(τ) ≥ rkΥ(σ). Analogously we can prove rkΥ′(τ) ≤ rkΥ(σ), so
the result follows.

An abstract tree is an equivalence class of labeled trees under the relation of bisimilarity.
Let AT be the space of abstract trees represented by the total function δAT given by
δAT(p) = δLT(p)/�. We typically denote abstract trees by A, with or without sub- or
superscripts. As usual with quotient constructions, any property of labeled trees can be
extended to abstract trees by stipulating that an abstract tree has the property in question
if one of its representatives does. Note that for some properties this extension behaves better
than for some others. For example, the property of having rank α behaves well, since by
Lemma 4.1 any two bisimilar labeled trees have the same rank. On the other hand, the
property of being finitely branching does not behave as well, since every finitely branching
labeled tree is bisimilar to an infinitely branching one.

Note that, according to our definition, formally speaking an abstract tree is not itself a
tree but only a certain type of set of labeled trees. However, for the sake of intuition it can
be helpful to think of an abstract tree as an unordered tree without any concrete underlying
set of vertices, as follows. We call an informal tree a (possibly empty) countable set I of
objects of the form (n, J), where n is a natural number and J is again an informal tree. The
intuition is that such a tree I is the tree for which each such object (n, J) represents a child
of the root of I with label n and whose subtree is exactly J . See Figure 1 for the depiction
of a simple informal tree.

Figure 1. Depiction of the informal tree {(0, {(3,∅)}), (0,∅), (2,∅)}.

To see how informal trees correspond to abstract trees, let δIT be the partial function
defined by corecursion with

δIT(p) = {(n, δIT(q)) ; ∃k((p)k = 〈n+ 1〉_q)}.
Then we say an informal tree I corresponds to an abstract tree A if there exists p ∈ dom(δIT)
with δIT(p) = I and δAT(p) = A.

Proposition 4.2. In ZFC, the domain of δIT is the set of p ∈ NN for which δAT(p) is
wellfounded. Therefore, in ZFC no informal tree corresponds to an illfounded abstract tree.

Vol. 15:3 GAME CHARACTERIZATIONS AND LOWER CONES IN THE WEIHRAUCH DEGREES 11:15

This is, of course, because if p is such that δAT(p) is illfounded, then in order for
p ∈ dom(δIT) to hold there would have to exist an infinite ∈-descending chain of sets starting
at δIT(p), contradicting the axiom of foundation.

However—as is often the case with definitions by corecursion [MD97]—, this definition
and the correspondence would also work for illfounded trees if one were to work in a system of
non-wellfounded set theory such as ZFC− + AFA, where AFA is the axiom of anti-foundation
first formulated by Forti and Honsell [FH83] and later popularized by Aczel [Acz88]—in the
style of Aczel [Acz88, Chapter 6], in ZFC− + AFA the set of informal trees can be defined
as the greatest fixed point of the class operator Φ defined by letting Φ(X) be the class of all
countable sets of elements of the form (n, T), with n ∈ N and T a countable subset of X.
Thus in ZFC− + AFA the set of informal trees is exactly⋃

{x ∈ V ; x ⊆ Φ(x)}.

Proposition 4.3 (ZFC− + AFA). The correspondence between abstract and informal trees
is a bijection.

We will not pursue this line of investigation any further; we thus now move back to our
setting of ZFC for the remainder of the paper.

Computable functions between abstract trees. We denote by O(N) the represented space
of subsets of N given by enumeration, i.e., so that p is a name for X ⊆ N iff X = {n ∈
N ; ∃k ∈ N(p(k) = n+ 1)}. Note that any computable function of type ⊆ O(N)⇒ O(N) has
a computable realizer which uses only positive information, by which we mean that it works
by only following rules of the form “enumerate a certain natural number into the output set
only after having seen some finite set of natural numbers enumerated into the input set”,
i.e., via enumeration operators (cf., e.g., [Odi99, Chapter XIV]). Let SubTrees : LT→ O(N)
be defined by letting SubTrees(Υ) = {n ∈ N ; eLT(n) is a labeled subtree of Υ}. It is easy to
see that SubTrees is computable.

Lemma 4.4. There exists a computable map ConsTree : ⊆ O(N) ⇒ LT such that the
composition ConsTree ◦ SubTrees is total and Υ′ ∈ ConsTree ◦ SubTrees(Υ) implies Υ′ ' Υ.

Proof. ConsTree can be defined as follows. Suppose we are at stage k of the construction,
when some n ∈ N is enumerated into the input. If some m has been enumerated at some
earlier stage such that eLT(m) ⊃ eLT(n), then we proceed to the next stage. Otherwise let
X be the set of m ∈ N such that eLT(m) is a maximal subtree of eLT(n) among those m
which have been enumerated at earlier stages. By construction, for each m ∈ X we have
defined an associated a(m) ∈ N and an isomorphism ιm : eLT(m) → eLT(a(m)), in such a
way that eLT(a(m)) is guaranteed to be a subtree of the output tree we are constructing.
Let N ≥ n be least such that there exists an isomorphism ιn : eLT(n)→ eLT(N) extending
ιm for each m ∈ X (in particular eLT(a(m)) ⊂ eLT(N) for every m ∈ X) and such that
no node of eLT(N) which is not in

⋃
m∈X eLT(a(m)) has been promised to be part of our

current partial output. Then let a(n) := N and guarantee that eLT(N) will be a subtree of
our output tree.

It is now straightforward to check that running the algorithm above on a name for
SubTrees(Υ) we have Υ =

⋃
n∈dom(a) eLT(n) and that ι :=

⋃
n∈dom(a) ιn is an isomorphism

between Υ and Υ′ :=
⋃
n∈dom(a) eLT(a(n)).

11:16 H. Nobrega and A. Pauly Vol. 15:3

Lemma 4.5. Let G ` g : ⊆ AT⇒ AT. Suppose F : ⊆ NN → NN and H : ⊆ NN → NN are
such that δLTF (p)� δLT(p) and δLTH(q)� δLT(q) for any p ∈ dom(F) and q ∈ dom(H),
and dom(G) ⊆ dom(HGF). Then HGF ` g.

Proof. We have δATHGF (p) = δATGF (p) and δATF (p) = δAT(p), therefore δATHGF (p) =
δATG(p).

Corollary 4.6. Let F,H be computable realizers of ConsTree and SubTrees, respectively.
If G is a computable realizer of some g : ⊆ AT⇒ AT, then so is FHGFH.

Proof. Indeed, we have δLTFH(p) ∈ ConsTree ◦ SubTreesδLT(p), so δLTFH(p) � δLT(p).

Note that HGF is a computable realizer of some function g′ : ⊆ O(N)⇒ O(N); thus we
can assume that FHGFH works by only following rules of the form “make a certain finite
labeled tree a subtree of the output only after having seen some finite set of finite labeled
trees as subtrees of the input”, which is to say, “make a certain finite labeled tree a subtree
of the output only after having seen a certain finite labeled tree as a subtree of the input”.

4.2. The pruning derivative. We now define the main operation which will be used in
the game characterization of the class of functions of any fixed Baire class. First, let us
recall the definition from [Pau1X] of the space CO of countable ordinals represented by the
function δnK defined recursively by

(1) δnK(0p) = 0
(2) δnK(1p) = δnK(p) + 1
(3) δnK(2ppnqn∈N) = supn∈N δnK(pn).

Definition 4.7. We call pruning derivative the operation PD : UT→ UT which assigns to
each unlabeled tree T its subtree PD(T) := {σ ∈ T ; σ has descendants of arbitrary lengths
in T}. We overload notation and also denote by PD : LT→ LT the operation which assigns
to each labeled tree Υ = (T, ϕ) its subtree PD(Υ) whose domain is PD(T). As usual, these
definitions can be iterated transfinitely in a natural way by letting

(1) PD?(· , 0) = id
(2) PD?(· , α+ 1) = PD(PD?(· , α))
(3) PD?(· , λ) =

⋂
α<λ PD?(· , α), for limit λ > 0.

Since trees are countable, for any given tree the iteration described above will stabilize
at some countable stage for each tree. Thus, as functions between represented spaces, we
can consider them as having types PD? : UT × CO → UT and PD? : LT × CO → LT,
respectively.

Lemma 4.8. For σ ∈ T , we have σ ∈ PD?(T, α) iff rkT (σ) ≥ ω · α.

Lemma 4.9. If B ⊆ Υ×Υ′ is a bisimulation and σ B τ holds, then rkΥ(σ) = rkΥ′(τ).

Proof. By induction on rkΥ(σ). For the base case, note that rkΥ(σ) = 0 iff σ is a leaf of Υ,
and in this case σ B τ implies that τ is also a leaf of Υ′ and therefore also has rank 0. Now
suppose the result holds for every node of rank < rkΥ(σ). For each β < rkΥ(σ) there exists
some descendant σ′ of σ in Υ such that rkΥ(σ′) = β. Since B is a bisimulation, there exists
a descendant τ ′ of τ in Υ′ such that σ′ B τ ′. By induction hypothesis we have rkΥ′(τ

′) = β,
and since β < rkΥ(σ) was arbitrary we have rkΥ′(τ) ≥ rkΥ(σ). Analogously we can prove
rkΥ′(τ) ≤ rkΥ(σ), so the result follows.

Vol. 15:3 GAME CHARACTERIZATIONS AND LOWER CONES IN THE WEIHRAUCH DEGREES 11:17

Corollary 4.10. If Υ� Υ′ then PD?(Υ, α)� PD?(Υ′, α) for any α < ω1.

We overload notation yet again and denote by PD : AT→ AT and PD? : AT×CO→ AT
the operations assigning to each abstract tree A with representative Υ and each countable
ordinal α the subtrees PD(A) and PD?(A, α) with representatives PD(Υ) and PD?(Υ, α),
respectively; Corollary 4.10 guarantees that these are well-defined operations. Whenever not
specified otherwise by the context, in what follows PD and PD? will refer to the operations
on abstract trees.

4.3. The Weihrauch degree of the pruning derivative. In order to analyze the
Weihrauch degree of PD?, we will first introduce and analyze several operations on trees.
We introduce and analyze them as modularly as possible, in the hope that this will increase
the clarity of the presentation and the potential for applicability of the operations in other
situations.

Given σ0, . . . , σn−1 ∈ N<N such that |σi| = |σj | = ` for each i, j < n, let pσ0, . . . , σn−1q ∈
N` be defined by pσ0, . . . , σn−1q(m) = pσ0(m), . . . , σn−1(m)q for each m < `. Note that
pσ0, . . . , σn−1q ⊆ pτ0, . . . , τn−1q iff σi ⊆ τi for every i < n. Now, given trees T0, . . . , Tn−1,
let their product be the tree

⊗
i<n Ti := {pσ0, . . . , σn−1q ; ∀i < n(σi ∈ Ti and |σi| = |σ0|)}.

If n = 2 then we use the smaller infix notation T0⊗T1 to denote the product.

Lemma 4.11. The operation
⊗

: UT<N → UT is computable and

(1)
⊗

i<n Ti = ∅ iff Ti = ∅ for some i < n.
(2) PD(

⊗
i<n Ti) =

⊗
i<n PD(Ti).

(3)
⋂
β<α

⊗
i<n T

β
i =

⊗
i<n

⋂
β<α T

β
i for any ordinal α.

In particular, PD?(
⊗

i<n Ti, α) =
⊗

i<n PD?(Ti, α) for any ordinal α.
We extend the binary product ⊗ to type LT × UT → LT by letting (T, ϕ)⊗S =

(T ⊗S, ϕ′), where ϕ′(pσ, τq) = ϕ(σ).

Lemma 4.12. If S is pruned and nonempty, then (T, ϕ)� (T, ϕ)⊗S.

Proof. Let B ⊆ T × (T ⊗S) be given by σ B τ iff τ = pσ, ξq for some ξ ∈ S. It is easy to
see that B satisfies conditions (label) and (parent). Suppose σ B τ , and let ξ ∈ S be such
that τ = pσ, ξq. For (forth), let σ′ be a child of σ in (T, ϕ). Since S is pruned, ξ has a child
ξ′ in S, and therefore τ ′ := pσ′, ξ′q is a child of τ in (T, φ)⊗S. Now σ′ B τ ′ follows. For
(back), let τ ′ be a child of τ in (T, φ)⊗S. Thus σ′ is a child of σ in (T, ϕ), from which
σ′ B τ ′ follows.

For our next operation on trees, let us first define some auxiliary notation [σ0, . . . , σn−1],
for σ0, . . . , σn−1 ∈ N<N.

Definition 4.13. We define [] := 〈〉. Then, given σ0, . . . , σn−1 ∈ N<N such that n = |σ0| > 0
and |σi| = n− i for each i < n, let [σ0, . . . , σn−1] be defined by

[σ0, . . . , σn−1](m) = pσ0(m), σ1(m− 1), σ2(m− 2), . . . , σm(0)q

for each m < n. Note that [σ0, . . . , σn−1] ⊆ [τ0, . . . , τm−1] iff n ≤ m and σi ⊆ τi for each
i < n. Now, given trees 〈Tn〉n∈N, let their countable product be the tree

�
n∈N

Tn := {[σ0, . . . , σk−1] ; ∀m < k(|σm| = k −m and σm ∈ Tm)}.

11:18 H. Nobrega and A. Pauly Vol. 15:3

Note that 〈〉 ∈ �n∈N Tn always holds. In particular, it is not always the case that
PD?(�n∈N Tn, α) = �n∈N PD?(Tn, α) holds for all α, contrary to the situation for finite
products of trees.

Lemma 4.14. The operation � : UTN → UT is computable and

(1) For m > 0 we have rkS([σ0, . . . , σm−1]) ≤ mini<m rkTi(σi), with equality in case
rk(Tj) ≥ mini<m rkTi(σi) holds for each j ≥ m. As a consequence, we have rk(S) ≤
minn∈N(rk(Tn) + n).

(2) For every α we have PD?(�n∈N Tn, α) ⊆�n∈N PD?(Tn, α), with equality in case α = 0
or PD?(Tn, α) 6= ∅ for all n ∈ N.

(3) If all Tn are pruned and nonempty then so is �n∈N Tn.

Proof. The computability of� is straightforward.
(1) By induction on rkTi(σi), we show that rkS([σ0, . . . , σm−1]) ≤ rkTi(σi). If rkTi(σi) =

0, this is easy to see. For rkTi(σi) > 0 we have that every descendant of σi in Ti has
rank less than rkTi(σi), so by inductive hypothesis every descendant of [σ0, . . . , σm−1] in
S has rank less than rkTi(σi), and therefore rkS([σ0, . . . , σm−1]) ≤ rkTi(σi). Conversely, by
induction on α we show that if rkTi(σi), rk(Tj) ≥ α holds for all i < m and j ≥ m, then
rkS([σ0, . . . , σm−1]) ≥ α as well. The case α = 0 is clear. Now suppose α > 0. Given
β < α, for each i < m let σ′i be an immediate child of σi in Ti of rank at least β, and
let σ′m ∈ Tm have length 1 and rank at least β. Then [σ′0, . . . , σ

′
m] is an immediate child

of [σ0, . . . , σm−1] in S. Since rk(Tj) ≥ β for each j ≥ m + 1, by induction hypothesis
we get rkS([σ′0, . . . , σ

′
m]) ≥ β. Therefore rkS([σ0, . . . , σm−1]) > β, and since β < α was

arbitrary we get rkS([σ0, . . . , σm−1]) ≥ α, as desired. Finally τ ∈ S has length n+ 1, then
τ = [σ0, . . . , σn] where σi ∈ Ti for every i ≤ n. In particular, rkS(τ) ≤ rkTn(σn) < rk(Tn),
so rk(S) = rkS(〈〉) ≤ rk(Tn) + n.

(2) Follows by combining (1) with Lemma 4.8.
(3) Follows from (1) since a tree is pruned and nonempty iff all its nodes have rank∞.

Definition 4.15. Given trees T0, . . . , Tn−1, let their mix be the tree
⊕

i<n Ti which
satisfies

⊕
i<n Ti = ∅ iff Ti = ∅ for some i < n, and otherwise 〈〉 ∈

⊕
i<n Ti and

Conc(
⊕

i<n Ti, 〈pm, kq〉) = Conc(Tm, 〈k〉) for each m < n and k ∈ N. Intuitively, the
mix of T0, . . . , Tn−1 is the tree obtained by merging the roots of those trees into a single
root. If n = 2 then we use the smaller infix notation T0⊕T1 to denote the mix.

Lemma 4.16. The operation
⊕

: UT<N → UT is computable and

(1) PD(
⊕

i<n Ti) =
⊕

i<n PD(Ti).

(2)
⋂
β<α

⊕
i<n T

β
i =

⊕
i<n

⋂
β<α T

β
i for any ordinal α.

In particular, PD?(
⊕

i<n Ti, α) =
⊕

i<n PD?(Ti, α) for any ordinal α

Definition 4.17. Given trees 〈Tn〉n∈N, let their countable mix be the tree �n∈N Tn such
that 〈〉 ∈ �n∈N Tn and Conc(�n∈N Tn, 〈pm, kq〉) = Conc(Tm, 〈k〉) for each m, k ∈ N. As
before with countable products,� will not commute with PD?(· , α) for all α in general.

Lemma 4.18. The operation� : UTN → UT is computable and satisfies PD?(�n∈N Tn, α) ⊆
�n∈N PD?(Tn, α), with equality in case α = 0 or PD?(Tn, α) 6= ∅ for some n ∈ N.

To proceed, we need the notion of a Borel truth value. This represented space was
introduced in [GKP17] (built on ideas from [Mos09]), and further investigated in [Pau1X].
Our definition differs slightly from the one given in the literature, but is easily seen to be
equivalent.

Vol. 15:3 GAME CHARACTERIZATIONS AND LOWER CONES IN THE WEIHRAUCH DEGREES 11:19

Definition 4.19. A Borel truth value is a pair b = (T, µ) such that T is a wellfounded tree
and µ is a function, called a tagging function, assigning to each node of T one of the tags
⊥,>, ∀, ∃, in such a way that each leaf is tagged > or ⊥, and each non-leaf node is tagged ∀
or ∃ (in alternating fashion, i.e., so that if a node tagged ∀ has a parent, then the parent is
tagged ∃ and vice versa). A name for a Borel truth value (T, µ) is an element p ∈ 5N which
is a δUT -code for T and such that if σ ∈ T , i.e., if σ is a path through p, then

µ(σ) =



⊥, if σ = 〈〉 and p(0) = 1, or |σ| = 1 and p(σ(0)) = 1

>, if σ = 〈〉 and p(0) = 2, or |σ| = 1 and p(σ(0)) = 2

∀, if σ = 〈〉 and p(0) = 3, or |σ| = 1 and p(σ(0)) = 3

∃, if σ = 〈〉 and p(0) = 4, or |σ| = 1 and p(σ(0)) = 4

µ′(shift(σ)), if |σ| > 1,

where (T ′, µ′) is the Borel truth value named by (shift(p))σ(0). In other words, intuitively
in a name for a Borel truth value, zeroes indicate absence of the corresponding node, and
nonzero values indicate both presence of the corresponding node and its tag. The value
Val(b) ∈ {>,⊥} of a Borel truth value b is defined by recursion on the rank of b in a
straightforward way. The space of Borel truth values is denoted by S(B). The Σ0

α -truth
values (denoted S(Σ0

α)) are those with rank ≤ α and root tagged ∃, and the Π0
α -truth values

(denoted S(Π0
α)) are those with rank ≤ α and root tagged ∀.

Given an ordinal α, with α = λ+ n for some limit ordinal λ and n ∈ N, let α̂ = λ+ 2n
and α̌ = λ+ dn2 e.

Proposition 4.20. The map isPresent : ⊆ LT× CO× N⇒
∐
α∈CO S(Π0

α), mapping (Υ, α, `)

such that eLT(`) is linear to (max{1, α̂}, b) where Val(b) = > iff eLT(`) ⊆ PD?(Υ, α), is
computable.

Proof. It is straightforward to see that α 7→ max{1, α̂} : CO → CO is computable. Com-
putability of the second component is shown by induction over the δnK -name q of α provided.
If q = 0q′, then we check whether eLT(`) ⊆ Υ and return either the tree of rank 1 with
root tagged ∀ and children tagged > (if yes), or with root tagged ∀ and children tagged ⊥
(if no). If q = 1q′, then α = β + 1 and q′ is a name for β. Let h be the height of eLT(`).
We start searching for confirmation that β > 0. Until we find it, we add children with
tag ∃ to the root tagged ∀, and then for each `′ ∈ N such that eLT(`′) is a linear tree of
height h′ > h extending eLT(`), we add a grandchild tagged > or ⊥ to the (h′ − h) th child,
depending on whether or not eLT(`′) ⊆ Υ. If we do receive confirmation that β > 0, we
add a grandchild tagged > to each ∃ -child produced so far, and then ignore these children.
Then, for each `′ ∈ N such that eLT(`′) is a linear tree of height h′ > h extending eLT(`), we
compute b`′ ∈ S(Π0

max{1,β̂}) denoting whether or not eLT(`′) ⊆ PD?(Υ, β). Then we add each

b`′ as a grandchild of the root of b via the (h′ − h) th new child tagged ∃. If q = 2pqiqi∈N,
then α = supi∈N αi and each qi is a name for αi. For each i ∈ N, we compute whether
eLT(`) ⊆ PD?(Υ, αi) as bi ∈ S(Π0

max{1,α̂i}). By induction, each bi has root tagged ∀, and we

now obtain the answer b as the mix of the bi.

Claim 4.21. Val(b) = > iff eLT(`) ⊆ PD?(Υ, α).

By induction on the name q of α. If q = 0q′ then it is immediate to see that the claim
holds. Suppose the claim holds for q′ and let q = 1q′. Let β = δnK(q′) and suppose eLT(`)

11:20 H. Nobrega and A. Pauly Vol. 15:3

has height h. Then eLT(`) ⊆ PD?(Υ, α) iff for every n ∈ N there exists some `′ ∈ N such
that eLT(`′) is a linear tree of height h + n extending eLT(`), with eLT(`′) ⊆ PD?(Υ, β).
By induction, the result of iterating the algorithm for (Υ, β, `′) gives the correct output.
Therefore Val(b) = > iff eLT(`) ⊆ PD?(Υ, α). Finally, suppose the claim holds for each qn
and let q = 2pqnqn∈N. Let αn = δnK(qn). Again, by induction the result of iterating the
algorithm for (Υ, αn, `) gives the correct output. Therefore Val(b) = > iff all children of the
roots of all bn have value > iff eLT(`) ⊆ PD?(Υ, αn) for all n ∈ N iff eLT(`) ⊆ PD?(Υ, α), as
desired.

Claim 4.22. The Borel truth value b has rank ≤ max{1, α̂}.

We again proceed by induction on the name q of α. If q = 0q′ then by construction b
has rank 1. If q = 1q′ and β := δnK(q′) = 0, then again by construction b has rank ≤ 2 = 1̂.
If q = 1q′ and β := δnK(q′) > 0, then by induction each bτ as defined in the algorithm has

rank ≤ β̂, and therefore b has rank ≤ β̂ + 2 = α̂. Finally, if q = 2pqiqi∈N, for each i let
αi = δnK(qi). By induction, each bi as defined in the algorithm has rank ≤ max{1, α̂i}, and
by construction b has rank ≤ max{1, supi∈N α̂i} = max{1, α̂}.

Proposition 4.23. The map Witness : ⊆ S(B)⇒ UT, mapping b of rank α > 0 to some T
such that if Val(b) = > then PD?(T, α̌) is a nonempty pruned tree, and if Val(b) = ⊥ then
PD?(T, α̌) = ∅, is computable.

Proof. If b is composed of a single node, then we output N<N or ∅ according to whether
Val(b) = > or Val(b) = ⊥. Otherwise, we iteratively compute trees (Tn)n∈N for all the
subtrees rooted at the children of the root of b, and output�n∈N Tn if the root of b is tagged
∀, or output �n∈N Tn if the root of b is tagged ∃.

Claim 4.24. Suppose β > 0 is such that PD?(Tn, β) is pruned for each n ∈ N. Then
PD?(T, β) is pruned, if the root of b is tagged ∀, and PD?(T, β + 1) is pruned, if the root of
b is tagged ∃. Furthermore, if PD?(T, δ) is pruned, then it is nonempty in case Val(b) = >
and empty in case Val(b) = ⊥.

If b is composed of a single node then the claim follows easily. Otherwise, suppose
the root of b is tagged ∀, so that T = �n∈N Tn. If Val(b) = > then each PD?(Tn, β) is
pruned and nonempty, and therefore the same holds for PD?(T, β). Conversely, if Val(b) = ⊥
then PD?(Tn0 , β) = ∅ for some n0 ∈ N. Thus there is some γ < β and H ∈ N such that
PD?(Tn0 , γ) has height ≤ H < ω. Then PD?(T, γ) has height ≤ H ′ < ω for some H ′

depending on H and n0, and therefore PD?(T, β) = ∅. Now suppose the root of b is tagged
∃, so that T = �n∈N Tn. If Val(b) = > then some PD?(Tn, β) is pruned and nonempty.
Therefore the same holds for PD?(T, β). Otherwise, if Val(b) = ⊥ then each PD?(Tn, β) is
empty. Therefore PD?(T, β) ⊆ {〈〉}, and thus PD?(T, β + 1) is empty.

Claim 4.25. Let b′ be a Borel truth value and let T ′ be the result of applying the algorithm
above to b′. For β = rk(b′), we have that if the root of b′ has tag ∀ then PD?(T ′, β̌) is pruned,
and if the root of b′ has tag ∃ then PD?(T ′, β̌ + 1) is pruned.

By induction on β. If β = 0, i.e., if b′ is a single node, then by construction T ′ is pruned.
Now suppose β > 0, and let the n th child σn of the root of b′ have rank βn < β. Suppose
the root of b′ has tag ∃, so that each σn is either a leaf or has tag ∀. By induction, the result
Tn of applying the algorithm to the subtree of b′ rooted at σn is such that PD?(Tn, β̌n) is
pruned. Since supn∈N β̌n ≤ β̌, by the preceding claim it follows that PD?(T, β̌+ 1) is pruned.

Vol. 15:3 GAME CHARACTERIZATIONS AND LOWER CONES IN THE WEIHRAUCH DEGREES 11:21

Finally, suppose the root of b′ has tag ∀, so that each σn is either a leaf or has tag ∃. By
induction, the result Tn of applying the algorithm to the subtree of b′ rooted at σn is such
that PD?(Tn, β̌n + 1) is pruned. If supn∈N(β̌n + 1) ≤ β̌ for each n, then by the preceding

claim we are done. Otherwise, say β̌n = β̌ for some n. Then βn is odd and β = βn + 1.
In particular βn = γn + 1 for some γn, and therefore δ̌ ≤ γ̌n < β̌n for each δ < βn. Hence,
since by induction the result S of applying the algorithm to any subtree of β′ rooted at
some child of σn is such that PD?(S, δ̌) is pruned for some δ < βn, by the preceding claim it
follows that PD?(Tn, γ̌n + 1) = PD?(Tn, β̌n) is pruned. Thus, again by the preceding claim,
PD?(T, β̌) is pruned.

Lemma 4.26. For each α ∈ CO we have that PD?(· , α) is parallelizable.

Proof. Given abstract trees 〈An〉n∈N with respective representatives 〈Υn〉n∈N, let A be the
abstract tree represented by the labeled tree Υ in which the root has a child σn labeled n for
each n ∈ N such that Υn 6= ∅, and such that Conc(Υ, σn) = Υn in the positive case. It is
now straightforward to see that each PD?(An, α) can be reconstructed from PD?(A, α).

Let 2 be the represented space composed of two elements, > and ⊥, the first represented
by 1N and the latter by 0N.

Corollary 4.27. For each α > 0 we have that PD?(· , α) is Weihrauch-equivalent to the
parallelization of idα : S(Π0

α̂) → 2. Furthermore, the reductions in both directions can be
taken to be uniform in α.

Proof. To reduce PD?(· , α) to the parallelization of idα, note that we can use isPresent
from Proposition 4.20 to compute for each linear labeled tree whether or not to include it
in PD?(Υ, α) as a S(Π0

α̂)-truth value. We then use the parallelization of idα : S(Π0
α̂) → 2

to convert all of these into booleans, and can thus construct PD?(Υ, α). For the converse,
we use Witness(α̂, b) from Proposition 4.23 to obtain some Υ such that PD?(Υ, α) = ∅ if
Val(b) = ⊥ and PD?(Υ, α) 6= ∅ if Val(b) = >. As {∅} is a decidable subset of LT, we can
recover b ∈ 2 after obtaining PD?(Υ, α) from the oracle.

Theorem 4.28 (Folklore). If A ⊆ NN is Wadge-complete for Π0
α (respectively effectively

Wadge-complete for Π0
α), then χ̂A is continuously Weihrauch-complete for Baire class α

(respectively Weihrauch-complete for effective Baire class α), where χA : NN → 2 is given by
χA(x) = > iff x ∈ A.

Proof. That χ̂A is Baire class α follows from noticing that

χ̂A
−1[σ] =

⋂
n<|σ|
σ(n)=0

{x ∈ NN ; (x)n ∈ A} ∩
⋂
n<|σ|
σ(n)=1

{x ∈ NN ; (x)n 6∈ A},

which is the intersection of a Π0
α set with a Σ0

α set.
Now let F : ⊆ NN → NN be a Baire class α realizer of f : ⊆ X ⇒ Y. Let 〈σn ; n ∈ N〉

be some enumeration of N<N. Since F is Baire class α, there exists some countable
collection 〈Xn,m ; n,m ∈ N〉 of Σ0

α sets such that F−1[σn] =
⋃
m∈NXn,m. Since A is Wadge-

complete for Π0
α, for each n,m ∈ N there exists a continuous fn,m : NN → NN such that

Xn,m = f−1
n,m[NN rA]. Now, defining a continuous K : NN → NN by (K(x))pn,mq = fn,m(x),

we have σn ⊆ F (x) iff x ∈ Xn,m for some m iff χ̂A(K(x))(pn,mq) = 1 for some m. Finally,
defining a continuous H : ⊆ NN → NN by H(x) =

⋃
{σn ; ∃m(x(pn,mq) = 1} with its

natural domain, we have Hχ̂AK � F . Therefore F ≤sW χ̂A, and f ≤sW χ̂A as well.

11:22 H. Nobrega and A. Pauly Vol. 15:3

Corollary 4.29. For each α > 0 the parallelization of the map idα : S(Π0
α̂) → 2 is

(continuously) Weihrauch-complete for (effective) Baire class α.

Proof. It is enough to show that for each α > 0 the characteristic function of any Π0
α

set is continuously Weihrauch-reducible to idα, and that idα is Weihrauch-reducible to
the characteristic function of some Π0

α set. Both of these claims can be easily proved by
induction.

Corollary 4.30. PD?(· , α) is Weihrauch-complete for Baire class α̂.

Corollary 4.31. PD?(· , ·) ≡W UCNN.

Proof. It was shown in [Pau1X] that ̂id : S(B)→ 2 ≡W UCNN .

4.4. The transparency of the pruning derivative.

Proposition 4.32. The map isAbsent : ⊆ LT× CO× N⇒
∐
α∈CO S(Π0

α), mapping (Υ, α, `)

such that eLT(`) is linear to (max{1, α↑}, b) where Val(b) = > iff eLT(`) 6⊆ PD?(Υ, α), is
computable.

Proof. We just run isPresent on (Υ, α, `) then dualize the output by exchanging tags ∀ with
∃ and > with ⊥.

Corollary 4.33. The operation Neg : LT× CO× N⇒ UT, given by S ∈ Neg(Υ, α,m) iff
PD?(S, α) is a pruned tree and PD?(S, α) 6= ∅ iff eLT(m) ⊆ PD?(Υ, α), is computable.

Proof. Let Υ0, . . . ,Υn be the linear subtrees of eLT(m), and for each i ≤ n let `i ∈ N be such
that eLT(`i) = Υi. By Propositions 4.20 and 4.23, letting Si ∈Witness ◦ isPresent(Υ, α, `i),
we have that PD?(Si, α) is pruned and PD?(Si, α) 6= ∅ iff Υi ⊆ PD?(Υ, α). Now letting S =⊗

i≤n Si we have that PD?(S, α) is pruned and that PD?(S, α) 6= ∅ iff eLT(m) ⊆ PD?(Υ, α),
as desired.

Corollary 4.34. The operation WitnessAbsence : LT × CO × NN ⇒ UT, given by S ∈
WitnessAbsence(Υ, α, x) iff in case α > 0 then PD?(S, α) is a pruned tree and PD?(S, α) = ∅
iff eLT(x(m)) ⊆ PD?(Υ, α) for some m ∈ N, is computable.

Proof. For each m and each linear subtree Υm
0 , . . . ,Υ

m
nm of eLT(x(m)), let `mi ∈ N be such that

eLT(`mi) = Υm
i . By Propositions 4.32 and 4.23, letting Smi ∈Witness ◦ isAbsent(Υ, α, `mi),

we have that PD?(Smi , α) is a pruned tree and PD?(Smi , α) = ∅ iff Υm
i ⊆ PD?(Υ, α). Now

letting Sm =
⊗

i≤nm S
m
i we have that PD?(Sm, α) is pruned and that PD?(Sm, α) = ∅ iff

eLT(x(m)) ⊆ PD?(Υ, α). Now let S =�m∈N S
m. Suppose α > 0, and first suppose that

eLT(x(m)) ⊆ PD?(Υ, α) for some m ∈ N. Then PD?(Sm, α) = ∅, so for some β < α we
have that PD?(Sm, β) has some finite height H. Hence PD?(S, β) also has some finite height
H ′ (which depends on H and m), and therefore PD?(S, α) = ∅, as desired. Now suppose
eLT(x(m)) 6⊆ PD?(Υ, α) for all m ∈ N. Then each PD?(Sm, α) is pruned and nonempty, and
therefore the same holds for PD?(S, α).

Proposition 4.35 (Pauly [Pau1X, Theorem 31]). The function min : CO× CO→ CO is
computable.

Proposition 4.36. The function TreeWithRank : CO⇒ UT, given by

T ∈ TreeWithRank(α) iff T is a wellfounded tree and rk(T) = α,

is computable.

Vol. 15:3 GAME CHARACTERIZATIONS AND LOWER CONES IN THE WEIHRAUCH DEGREES 11:23

Proof. We will define a computable F ` TreeWithRank. Given p ∈ dom(δnK), if p(0) = 0
we let F (p) = 10N, i.e., a code for the tree {〈〉}. If p = 1q, we let F (p) be a code for the tree
T := {〈〉} ∪ {〈0〉_σ ; σ ∈ δUTF (p)}. Finally, if p = 2q0q1 . . ., we let F (p) be a code for the
mix of the trees coded by the F (qn). It is now routine to check that F ` TreeWithRank.

Corollary 4.37. The operation Pos : LT× CO× N⇒ UT, given by S ∈ Pos(Υ, α, n) iff

PD?(S, α) =

{
{〈〉}, if eLT(n) ⊆ PD?(Υ, α)

∅, otherwise,

is computable.

Proof. Given a labeled tree Υ = (T, ϕ), a countable ordinal α, and a natural number n, we
output a tree S of rank β := min({ω · α} ∪ {rkT (σ) ; σ ∈ eLT(n)}).

We have PD?(S, α) = {〈〉} iff β = ω · α iff rkT (σ) ≥ ω · α for each σ ∈ eLT(n) iff σ ∈
PD?(Υ, α) for each σ ∈ eLT(n) iff eLT(n) ⊆ PD?(Υ, α), and PD?(S, α) = ∅ otherwise.

Definition 4.38. We define Graft : LT× UT× UT× N<N → LT by

(1) Graft(Υ, S, U, σ)rExt(N<N, σ) = ΥrExt(N<N, σ)
(2) Conc(Graft(Υ, S, U, σ), σ) = (Conc(Υ, σ)⊗S)⊕U

Definition 4.39. We define Aux : LT × LT × UT × CO × N<N × N<N ⇒ LT as fol-
lows. Given Υ,Υaux ∈ LT, α ∈ CO, and σ, τ ∈ N<N such that |σ| = |τ | > 0, let
Υ′ ∈ Aux(Υ,Υaux, U, α, σ, τ) iff Υ′ = Graft(Υ, SN, SP⊗U, σ) for some

SN ∈ Neg(Υaux, α,⊥(τ))
SP ∈ [

⊗
n<|τ |−1(Neg(Υaux, α, τ(n)))]⊗Pos(Υaux, α,⊥(τ)).

Recall from Theorem 2.11 that every computable or continuous multi-valued function
between represented spaces is tightened by a strongly computable or strongly continuous,
respectively, multi-valued function between the same spaces. Therefore, in order to conclude
that PD?(· , α) is transparent for each α, it is enough to prove the following stronger result.

Theorem 4.40. There is a computable operation Trans :M(AT,AT)× CO⇒M(AT,AT)
such that g ∈ Trans(f, α) iff dom(fPD?(· , α)) ⊆ dom(g) and PD?(Ag, α) ∈ f(PD?(A, α))
for any A ∈ dom(fPD?(· , α)) and Ag ∈ g(A).

Proof. Let f ∈ M(AT,AT) be given in the form of a Turing machine M which strongly
computes f with some given oracle q. Let F : ⊆ NN → NN be defined with dom(F) =
dom(fδAT) by letting F (p) be the output of M on input pp, 0Nq and oracle q. Thus F is a
computable realizer of f , so by Corollary 4.6 we can assume that for each m there exists
a computable subset Xm ⊆ N such that eLT(m) ⊆ δLTF (p) iff eLT(n) ⊆ δLT(p) for some
n ∈ Xm. Thus we can construct a computable labeled tree ΥF which represents F , as
follows. The nodes of length 1 of ΥF are bijectively associated to the pairs (n, `) such that
eLT(`) is a linear tree of height 1 and n ∈ X`. If σ ∈ ΥF is associated to (n, `), then

(1) the label of σ in ΥF is the label of the node of eLT(`) at height |σ|, and
(2) the children of σ in ΥF are bijectively associated to the pairs (n′, `′) such that eLT(`′) is

a linear tree of height |σ|+ 1, n′ ∈ X`′ , and eLT(`) ⊆ eLT(`′).

It is now straightforward to check that if δLTF (p) is not empty then it is bisimilar to
the subtree Υp of ΥF composed of the root plus those σ which are associated to (n, `) with
eLT(n) ⊆ δLT(p).

11:24 H. Nobrega and A. Pauly Vol. 15:3

Formally, our goal now is to computably define a Turing machine M ′ from M , q, and α,
such that the function g := gM ′,q from the proof of Theorem 2.11 has the desired properties.
To simplify the presentation, we will define g directly and leave the definition of M ′ implicit.
Thus, we want to define a computable g : ⊆ LT⇒ LT such that for any p ∈ dom(F) and
any Υ′ ∈ g(δLT(p)), letting δLT(p′) = PD?(δLT(p), α), we have:

(1) if δLTF (p) 6= ∅ then PD?(Υ′, α)� Υp′ ;
(2) if δLTF (p) = ∅ then PD?(Υ′, α) = ∅.

Again, since F is computable, there exists a computable z ∈ NN such that δLTF (p) = ∅ iff
eLT(z(n)) ⊆ δLT(p) holds for some n ∈ N. Given p ∈ dom(fPD?(· , α)δAT), let Υ := δLT(p)
and U ∈ WitnessAbsence(Υ, α, z). Therefore, if δLTF (p) 6= ∅ then eLT(z(m)) 6⊆ δLT(p)
for all m ∈ N and thus PD?(U,α) is pruned and nonempty, and if δLTF (p) = ∅ then
eLT(z(m)) ⊆ δLT(p) for some m ∈ N and thus PD?(U,α) = ∅. Let V ∈ TreeWithRank(ω ·
α), so that PD?(V, α) = {〈〉}. Let Υ0 = (ΥF ⊕V)⊗U , so that if δLTF (p) 6= ∅ then
PD?(Υ0, α)� PD?(ΥF , α), and if δLTF (p) = ∅ then PD?(Υ0, α) = ∅. We let any node in
Υ0 coming from ΥF be associated to the same pair (n, `) as the corresponding node in ΥF .

Now suppose we are at stage s > 0 of the construction, so that we have already built
a tree Υs−1. Let σ := eN(s), where eN : N → N<N is any computable bijection such that
eN(s) ⊆ eN(s′) implies s ≤ s′. If σ 6∈ Υs−1 or σ ∈ Υs−1 but is not associated to any (n, `),
then let Υs = Υs−1. Otherwise suppose σ�(m+ 1) is associated to some (nm, `m) for each
m < |σ|. Let ∗σ := 〈n0, . . . , n|σ|−1〉 and define Υs := Aux(Υs−1,Υ, U, α, σ, ∗σ). Recall that
in this case we have

Conc(Υs, σ) = (Conc(Υs−1, σ)⊗SN)⊕(SP⊗U)

for some SN, SP as in the definition of Aux. Hence we let each descendant σ_τ of σ in Υs

in which τ comes from the Conc(Υs−1, σ)⊗SN component of ⊕ above be associated to the
same (n, `) as the corresponding node in Υs−1.

We then define Υ′ by letting σ ∈ Υ′ iff σ ∈ Υs for s = e−1
N (σ), with the label for σ being

its label in Υs in the positive case.

Claim 4.41. Every node of PD?(Υ′, α) other than the root is associated to some pair (n, `).

Indeed, it is easy to see that this is true of Υ0. Thus if a node ξ ∈ PD?(Υ′, α) is not
associated to some such pair, this means that ξ was added to Υ′ at some stage s > 0 of
the construction. Let σ = eN(s). In this case we have Υs := Aux(Υs−1,Υ, U, α, σ, ∗σ), i.e.,
Υs = Graft(Υs−1, SN, SP⊗U, σ) for some

SN ∈ Neg(Υ, α,⊥(∗σ)) and
SP ∈ [

⊗
m<|σ|−1(Neg(Υ, α, ∗σ(m)))]⊗Pos(Υ, α,⊥(∗σ)).

The fact that ξ is not associated to any pair (n, `) implies that ξ = σ_η for some η 6=
〈〉 coming from SP⊗U . By construction the subtree of ξ in Υ′ is the same as in Υs,
since for any s′ > s such that eN(s′) ⊇ ξ we have Υs′ = Υs′−1, and for any s′ > s
such that σ′ = eN(s′) 6⊇ ξ we have Υs′rExt(N<N, σ′) = Υs′−1rExt(N<N, σ′). Hence
Conc(PD?(Υ′, α), ξ) ⊆ Conc(PD?(SP⊗U,α), η) = ∅, i.e., ξ 6∈ PD?(Υ′, α).

Claim 4.42. If δLTF (p) = ∅ then PD?(Υ′, α) = ∅.

Indeed, if δLTF (p) = ∅ then PD?(U,α) = ∅. Hence PD?(Υ0, α) = ∅, and at each stage
s > 0 we either keep Υs = Υs−1, or else Υs differs from Υs−1 only in that

Conc(Υs, σ) = (Conc(Υs−1, σ)⊗SN)⊕(SP⊗U)

Vol. 15:3 GAME CHARACTERIZATIONS AND LOWER CONES IN THE WEIHRAUCH DEGREES 11:25

for some SN, SP as in the definition of Aux(Υs−1,Υ, U, α, σ, ∗σ), where σ = eN(s). But then
we have that

Conc(PD?(Υs, α), σ)
= (Conc(PD?(Υs−1, α), σ)⊗PD?(SN, α))⊕PD?(SP⊗U,α)
= Conc(PD?(Υs−1, α), σ)⊗PD?(SN, α),

so assuming by induction that PD?(Υs−1, α) = ∅ holds, it follows that Conc(PD?(Υs, α), σ) =
∅ as well. But then PD?(Υs, α) = ∅, as desired. Therefore we have PD?(Υ′, α) = ∅.

For the rest of the proof we assume that δLTF (p) 6= ∅, which implies that PD?(U,α) is a
pruned and nonempty tree. Furthermore, since PD?(V, α) = {〈〉}, we have 〈〉 ∈ PD?(Υ′, α).

Claim 4.43. Suppose σ ∈ Υ′r{〈〉}. Then σ ∈ PD?(Υ′, α) iff eLT(∗σ(m)) ⊆ PD?(Υ, α) for
each m < |σ|.

Let s = e−1
N (σ). Suppose eLT(∗σ(m)) 6⊆ PD?(Υ, α) for some m < |σ|. Let s′ =

e−1
N (σ�(m+1)). Note that PD?(SN, α) = PD?(SP⊗U,α) = ∅ for any SN ∈ Neg(Υ, α, ∗σ(m))

and SP ∈ Pos(Υ, α, ∗σ(m)). Thus we also have Conc(PD?(Υs, α), σ�(m+ 1)) = ∅. Put
together, and also considering the preceding claim, the two last statements imply τ 6∈
PD?(Υs′′ , α) for any τ ⊇ σ�(m+1). Thus σ 6∈ PD?(Υ′, α). Conversely, suppose eLT(∗σ(m)) ⊆
PD?(Υ, α) for every m < |σ|. Then for any

SP ∈ [
⊗

m<|σ|−1

(Neg(Υ, α, ∗σ(m)))]⊗Pos(Υ, α,⊥(∗σ))

we have PD?(SP⊗U,α) = PD?(SP, α) = {〈〉}. In particular it follows that the descendants
of σ in Υs which are not associated to any (n, `) already guarantee that σ ∈ PD?(Υ′, α), as
desired.

Let p′ be such that δLT(p′) = PD?(Υ, α).

Claim 4.44. The trees PD?(Υ′, α) and Υp′ are bisimilar.

Define B ⊆ PD?(Υ′, α) × Υp′ by letting σ B τ iff σ = τ = 〈〉 or |σ| = |τ |, σ�n B τ�n
for each n < |σ|, and σ and τ are associated to the same pair (n, `). In order to verify
that B is a bisimulation, the only nontrivial properties to check are (back) and (forth). So
suppose σ B τ and for (back) let τ ′ be a child of τ in Υp′ . Then τ ′ is associated to some
(n′, `′) where eLT(n′) ⊆ δLT(p′) = PD?(Υ, α). But then by construction σ has some child
σ′ in Υ′ associated to (n′, `′). By Claim 4.43 we have σ′ ∈ PD?(Υ′, α), and σ′ B τ ′ follows.
Finally, for (forth) let σ′ be a child of σ in PD?(Υ′, α). Again by Claim 4.43 we get that σ′

is associated to some (n′, `′) such that eLT(n′) ⊆ PD?(Υ, α). But then τ must have a child
τ ′ in Υp′ which is also associated to (n′, `′), and therefore σ′ B τ ′.

Our assumption that δLTF (p) 6= ∅ implies that both PD?(Υ′, α) and Υp′ are nonempty
trees, and B 6= ∅. Hence we have PD?(Υ′, α)� Υp′ as desired.

Theorem 4.45. The operation PD?(· , α) is a transparent cylinder.

Proof. Transparency follows directly from Theorem 4.40. To see that PD?(· , α) is a cylinder,
given a code p of an abstract tree A, let Ap be the abstract tree obtained from A by
changing each of its labels ` to p1, `q plus adding an infinite path with induced label
〈p0, p(n)q〉n∈N. Then PD?(Ap, α) is obtained from PD?(A, α) by the same change of labels
as above plus the addition of the same infinite path. Now both p and PD?(A, α) can
easily be reconstructed from PD?(Ap, α) without needing direct access to p; in other words,
idNN × PD?(· , α) ≤sW PD?(· , α).

11:26 H. Nobrega and A. Pauly Vol. 15:3

Let ATlin be the subspace of AT composed of the linear abstract trees, and let AT∗lin
be the subspace of ATlin composed of the linear abstract trees which have a unique infinite
induced label. The spaces ATfb and AT∗fb are defined analogously for finitely branching trees.
Note that AT∗lin is composed exactly of the nonempty pruned linear trees. Let Prunefb be
the restriction of PD to AT∗fb, and note that Prunefb : AT∗fb → AT∗lin.

Lemma 4.46. The operation Prunefb is Weihrauch-equivalent to lim.

Proof. (lim ≤W Prunefb) Given p ∈ dom(lim), we can build an abstract finitely branching
tree whose induced labels are exactly the sequences of the form (p)n�n. Since lim(p) is well
defined, this tree is in the domain of Prunefb; applying this map to this tree results in a
linear tree with an infinite branch labeled lim(p).

(Prunefb ≤W lim) Given a name p of an abstract tree A in the domain of Prunefb, let
Υ = δLT(p) be one of its representatives. Since Υ is bisimilar to a finitely branching tree, for
each σ ∈ Υ by Kőnig’s lemma we have that σ ∈ PD(Υ) iff Conc(Υ, σ) has infinite height.
Therefore deciding whether σ ∈ PD(Υ) holds can be done with a single use of lim, and since
lim is parallelizable, one application of lim suffices to decide this for all σ ∈ Υ at once. With
this information we can construct Prunefb(A).

Theorem 4.47. The operation Prunefb is transparent.

Proof. The proof is a simplified version of the proof of Theorem 4.40.
Let f : ⊆ AT∗lin ⇒ AT∗lin be computable. Then f has a realizer F such that for each

τ ∈ N<N there exists a computable Xτ ⊆ N<N such that τ is an induced label of the tree
δATF (p) iff ξ is an induced label of δAT(p) for some ξ ∈ Xτ . Let p be given and Υ := δLT(p).
We can computably define a labeled tree ΥG with the following properties. The nodes at
level 1 of ΥG are bijectively associated to the pairs (ξ, τ) such that |τ | = 1 and ξ ∈ Xτ is an
induced label of Υ. Recursively, if σ 6= 〈〉 is in ΥG and is associated to a pair (ξ, τ), then we
have:

(1) The induced label of σ in ΥG is τ .
(2) If some node of Υ with induced label ξ has rank at least |τ |+ 1, then the children of σ

in ΥG are bijectively associated to the pairs (ξ′, τ ′) such that |τ ′| = |τ |+ 1, τ ′ ⊃ τ , and
ξ′ ∈ Xτ ′ is an induced label of Υ; otherwise σ is a leaf of ΥG.

Claim 4.48. The trees PD(ΥG) and ΥFH := δLTFH(p) are bisimilar.

Let H ` PD : LT → LT. To see that PD(ΥG) � ΥFH , let σ B τ iff σ = τ = 〈〉 or σ
and τ have the same induced labels in PD(ΥG) and ΥFH , respectively. Now suppose σ B τ ,
and let σ be associated to (ξ0, τ1). Let σ′ be a child of σ in PD(ΥG). It follows that σ′ is
associated to some pair (ξ1, τ1) such that τ0 ⊆ τ1. Since σ′ is in the pruning derivative of
δLTG(p), by condition 2 of the construction it follows that there are nodes of Υ of arbitrary
length whose labels extend ξ1. Since Υ is bisimilar to a finitely branching tree, this implies
that some node ν of Υ with induced label ξ1 is the root of a subtree of Υ of infinite height.
Thus ν is in δLTH(p), and since ξ1 ∈ Xτ1 it follows that some node with induced label τ1 is
in ΥFH . Finally, since ΥFH is linear, it follows that τ has a child τ ′ with induced label τ1,
and thus σ′ B τ ′. Conversely, let τ ′ be a child of τ in ΥFH , and let τ1 be its induced label.
Therefore, some ξ1 ∈ Xτ1 is an induced label in PD(Υ), and thus some node ν of Υ has τ1 as
its induced label and is the root of a subtree of Υ of infinite height. This implies that some
child σ′ of σ in ΥG is associated to (ξ1, τ1), and that such σ′ is also in PD(ΥG). Therefore
σ′ B τ ′. Finally, note that ΥFH contains an infinite path since f : ⊆ AT∗lin ⇒ AT∗lin, which

Vol. 15:3 GAME CHARACTERIZATIONS AND LOWER CONES IN THE WEIHRAUCH DEGREES 11:27

implies that ΥG and PD(ΥG) also contain an infinite path. Therefore B 6= ∅ and PD(ΥG)
is bisimilar to ΥFH .

Claim 4.49. The tree ΥG is bisimilar to a finitely branching tree.

By construction, nodes of ΥG which have the same induced label have bisimilar (indeed,
isomorphic) subtrees. Thus if some node σ of ΥG has infinitely many children σn which are
roots of non-bisimilar subtrees, then the labels of the σn are pairwise distinct. Therefore the
σn must be associated to elements (ξn, τn) such that the τn are pairwise ⊆-incomparable.
But Υ is bisimilar to a finitely branching tree; thus in particular only finitely many different
labels occur on each of its levels. This implies that limn∈N |τn| =∞, and therefore arbitrarily
long prefixes of the infinite induced label of Υ occur among the prefixes of the τn. But then
we cannot have that all ξn have the same length |σ|+ 1, a contradiction.

Lemma 4.50. The operation Prunefb is a cylinder.

Proof. Given a name p of an abstract tree A ∈ dom(Prunefb), let Ap be the tree obtained
from A by changing the label ` of any node σ 6= 〈〉 to p`, p(|σ|)q. Then Prunefb(Ap) is
obtained from Prunefb(A) via the same transformation, and since Prunefb(A) has an infinite
branch, it is easy to reconstruct both p and Prunefb(A) from Prunefb(Ap). In other words,
idNN × Prunefb ≤sW Prunefb.

4.5. Games for functions of a fixed Baire class. For an ordinal α = λ+ 2n, with λ a
limit ordinal and n a natural number, let Pruneα be the corestriction of PD?(· , λ+ n) to
AT∗lin, let Pruneαfb be the corestriction of PD?(· , λ+ n) to AT∗fb, and finally let Pruneα+1 =
Prunefb ◦Pruneαfb.

Corollary 4.51. Let α < ω1. We have that Pruneα is a transparent cylinder which is
Weihrauch-complete for the Baire class α functions. Therefore the (Pruneα,Label)-Wadge
game characterizes the Baire class α functions.

Proof. Suppose α = λ+ 2n. We have that PD?(· , λ+ n) is a transparent cylinder which
is Weihrauch-complete for the Baire class λ+ 2n functions, so to see that the same holds
for Pruneλ+2n, by Theorem 2.14 it is enough to show that AT∗lin strongly encodes NN.
But any F : ⊆ NN ⇒ NN is easily seen to be strongly Weihrauch-equivalent to the map
F ′ : ⊆ NN ⇒ AT∗lin which assigns x ∈ dom(F) to any linear abstract tree whose unique
infinite label is in F (x). Now suppose α = λ + 2n + 1. Since AT∗lin ⊆ AT∗fb ⊆ AT, by

Proposition 2.7 and the fact that Pruneλ+2n is Weihrauch-complete for Baire class λ+ 2n it
follows that Pruneλ+2n

fb also has this property. Now, since Prunefb is a transparent cylinder
which is Weihrauch-complete for the Baire class 1 functions, the result follows.

In other words, for α = λ + 2n with λ a limit ordinal and n a natural number, the
restriction of the tree game in which the final tree built by player II must have (λ+ n)th

pruning derivative bisimilar to a linear tree characterizes the Baire class α functions, and
for α = λ+ 2n+ 1, the restriction of the tree game in which the final tree built by player II
must have (λ+ n)th pruning derivative bisimilar to a finitely branching tree characterizes
the Baire class α functions.

11:28 H. Nobrega and A. Pauly Vol. 15:3

References

[Acz88] Peter Aczel. Non-Well-Founded Sets. CSLI Lecture Notes. CSLI, 1988.
[And07] Alessandro Andretta. The SLO principle and the Wadge hierarchy. In Stefan Bold, Benedikt Löwe,

Thoralf Räsch, and Johan van Benthem, editors, Foundations of the Formal Sciences V: Infinite
Games, volume 11 of Studies in Logic, pages 1–38. College Publications, 2007.

[BG11a] Vasco Brattka and Guido Gherardi. Effective choice and boundedness principles in computable
analysis. Bulletin of Symbolic Logic, 1:73–117, 2011.

[BG11b] Vasco Brattka and Guido Gherardi. Weihrauch degrees, omniscience principles and weak com-
putability. Journal of Symbolic Logic, 76:143 – 176, 2011.

[BGH15] Vasco Brattka, Guido Gherardi, and Rupert Hölzl. Probabilistic computability and choice. Infor-
mation and Computation, 242:249–286, 2015.

[BGM12] Vasco Brattka, Guido Gherardi, and Alberto Marcone. The Bolzano-Weierstrass theorem is the
jump of weak Kőnig’s lemma. Annals of Pure and Applied Logic, 163(6):623–655, 2012.

[BGP17] Vasco Brattka, Guido Gherardi, and Arno Pauly. Weihrauch complexity in computable analysis.
Preprint, arXiv:1707.03202, 2017.

[BP18] Vasco Brattka and Arno Pauly. On the algebraic structure of Weihrauch degrees. Logical Methods in
Computer Science, 14(4), 2018.

[Car13] Raphaël Carroy. A quasi-order on continuous functions. Journal of Symbolic Logic, 78(2):633–648,
2013.

[Car14] Raphaël Carroy. Playing in the first Baire class. Mathematical Logic Quarterly, 60(1-2):118–132,
2014.

[CR92] Douglas Cenzer and Jeffrey Remmel. Recursively presented games and strategies. Mathematical
Social Sciences, 24(2-3):117–139, 1992.

[dB13] Matthew de Brecht. Quasi-Polish spaces. Annals of Pure and Applied Logic, 164(3):356–381, 2013.
[dB14] Matthew de Brecht. Levels of discontinuity, limit-computability, and jump operators. In Logic,

Computation, Hierarchies, volume 4 of Ontos Mathematical Logic, pages 79–107. De Gruyter, 2014.
[Dup01] Jacques Duparc. Wadge hierarchy and Veblen hierarchy part I: Borel sets of finite rank. Journal of

Symbolic Logic, 66(1):56–86, 2001.
[FH83] Marco Forti and Furio Honsell. Set theory with free construction principles. Annali della Scuola

Normale Superiore di Pisa—Classe di Scienze, 10(3):493–522, 1983.
[GKP17] Vassilios Gregoriades, Tamás Kispéter, and Arno Pauly. A comparison of concepts from computable

analysis and effective descriptive set theory. Mathematical Structures in Computer Science, 27(8):1414–
1436, 2017.

[GM09] Guido Gherardi and Alberto Marcone. How incomputable is the separable Hahn-Banach theorem?
Notre Dame Journal of Formal Logic, 50(4):393–425, 2009.

[Her96] P. Hertling. Unstetigkeitsgrade von Funktionen in der effektiven Analysis. PhD thesis, Fernuniversität
in Hagen, 1996.

[Hoy17] Mathieu Hoyrup. Results in descriptive set theory on some represented spaces. Preprint, arXiv
1712.03680, 2017.

[HP13] Kojiro Higuchi and Arno Pauly. The degree structure of Weihrauch-reducibility. Logical Methods in
Computer Science, 9(2):1–17, 2013.

[Ike10] Daisuke Ikegami. Games in Set Theory and Logic. PhD thesis, University of Amsterdam, 2010.
[Kec95] Alexander S. Kechris. Classical Descriptive Set Theory, volume 156 of Graduate Texts in Mathematics.

Springer, 1995.
[KP14] Takayuki Kihara and Arno Pauly. Point degree spectra of represented spaces. Preprint,

arXiv:1405.6866, 2014.
[LRP15] Stéphane Le Roux and Arno Pauly. Weihrauch degrees of finding equilibria in sequential games.

In Evolving Computability: Proceedings of the 11th Conference on Computability in Europe, held
in Bucharest, Romania, June 29–July 3, 2015, volume 9136 of Lecture Notes in Computer Science,
pages 246–257. Springer, 2015.

[MD97] Lawrence S. Moss and Norman Danner. On the foundations of corecursion. Logic Journal of the
IGPL, 5(2):231–257, 1997.

[Mos09] Yiannis N. Moschovakis. Descriptive Set Theory, volume 155 of Mathematical Surveys and Mono-
graphs. American Mathematical Society, second edition, 2009.

Vol. 15:3 GAME CHARACTERIZATIONS AND LOWER CONES IN THE WEIHRAUCH DEGREES 11:29

[Mot09] Luca Motto Ros. Borel-amenable reducibilities for sets of reals. Journal of Symbolic Logic, 74(1):27–49,
2009.

[Mot11] Luca Motto Ros. Game representations of classes of piecewise definable functions. Mathematical
Logic Quarterly, 57(1):95–112, 2011.

[MR14] Luca Motto Ros. Bad Wadge-like reducibilities on the Baire space. Fundamenta Mathematicae,
224(1):67–95, 2014.

[MRSS15] Luca Motto Ros, Philipp Schlicht, and Victor Selivanov. Wadge-like reducibilities on arbitrary
quasi-Polish spaces. Mathematical Structures in Computer Science, 25(8):1705–1754, 2015.

[NP17] Hugo Nobrega and Arno Pauly. Game characterizations and lower cones in the Weihrauch degrees.
In Jarkko Kari, Florin Manea, and Ion Petre, editors, Unveiling Dynamics and Complexity: 13th
Conference on Computability in Europe, CiE 2017, Turku, Finland, June 12–16, 2017, Proceedings,
pages 327–337. Springer, 2017.

[NP18] Eike Neumann and Arno Pauly. A topological view on algebraic computations models. Journal of
Complexity, 44, 2018.

[Odi99] P. G. Odifreddi. Classical Recursion Theory, Vol. II, volume 143 of Studies in Logic and the
Foundations of Mathematics. Elsevier, 1999.

[Pau12] Arno Pauly. Computable Metamathematics and its Application to Game Theory. PhD thesis, Univer-
sity of Cambridge, 2012.

[Pau14] Arno Pauly. The descriptive theory of represented spaces. Preprint, arXiv:1408.5329, 2014.
[Pau16] Arno Pauly. On the topological aspects of the theory of represented spaces. Computability, 5(2):159–

180, 2016.
[Pau1X] Arno Pauly. Computability on the space of countable ordinals. Journal of Symbolic Logic, 201X.

accepted for publication, see arXiv:1501.00386v2.
[PdB13] Arno Pauly and Matthew de Brecht. Towards synthetic descriptive set theory: An instantiation

with represented spaces. Preprint, arXiv:1307.1850, 2013.
[PdB15] Arno Pauly and Matthew de Brecht. Descriptive set theory in the category of represented spaces. In

Catuscia Palamidessi, editor, 30th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2015, Kyoto, Japan, July 6–10, 2015, pages 438–449. IEEE Computer Society, 2015.

[Peq15] Yann Pequignot. A Wadge hierarchy for second countable spaces. Archive for Mathematical Logic,
pages 1–25, 2015.

[PZ13] Arno Pauly and Martin Ziegler. Relative computability and uniform continuity of relations. Journal
of Logic and Analysis, 5, 2013.

[Sch02] Matthias Schröder. Extended admissibility. Theoretical Computer Science, 284(2):519–538, 2002.
[Sem07] Brian Semmes. Multitape games. In Johan van Benthem, Dov Gabbay, and Benedikt Löwe, editors,

Interactive Logic: Selected Papers from the 7th Augustus de Morgan Workshop, London, volume 1 of
Texts in Logic and Games, pages 195–207. Amsterdam University Press, 2007.

[Sem09] Brian Semmes. A Game for the Borel Functions. PhD thesis, University of Amsterdam, 2009.
[SS14] Matthias Schröder and Victor Selivanov. Hyperprojective hierarchy of qcb0-spaces. In Arnold

Beckmann, Ersébet Csuhaj-Varjú, and Klaus Meer, editors, Language, Life, Limits: Proceedings
of the 10th Conference on Computability in Europe, held in Budapest, Hungary, June 23–27, 2014,
volume 8493 of Lecture Notes in Computer Science, pages 352–361. Springer, 2014.

[SS15] Matthias Schröder and Victor Selivanov. Some hierarchies of QCB0-spaces. Mathematical Structures
in Computer Science, 25(8):1799–1823, 2015.

[Van78] Robert Van Wesep. Wadge degrees and descriptive set theory. In Alexander S. Kechris and Yiannis N.
Moschovakis, editors, Cabal Seminar 76–77, number 689 in Lecture Notes in Mathematics, pages
151–170. Springer, 1978.

[Wad83] William Wilfried Wadge. Reducibility and Determinateness on the Baire Space. PhD thesis, University
of California, Berkeley, 1983.

[Wei92a] Klaus Weihrauch. The degrees of discontinuity of some translators between representations of the
real numbers. Informatik Berichte 129, Fernuniversität Hagen, 1992.

[Wei92b] Klaus Weihrauch. The TTE-interpretation of three hierarchies of omniscience principles. Informatik
Berichte 130, Fernuniversität Hagen, 1992.

[Wei00] Klaus Weihrauch. Computable Analysis. Texts in Theoretical Computer Science. Springer, 2000.
[Wei08] Klaus Weihrauch. The computable multi-functions on multi-represented sets are closed under

programming. Journal of Universal Computer Science, 14(6):801–844, 2008.

