7,688 research outputs found

    Peer-to-Peer Energy Trading in Smart Residential Environment with User Behavioral Modeling

    Get PDF
    Electric power systems are transforming from a centralized unidirectional market to a decentralized open market. With this shift, the end-users have the possibility to actively participate in local energy exchanges, with or without the involvement of the main grid. Rapidly reducing prices for Renewable Energy Technologies (RETs), supported by their ease of installation and operation, with the facilitation of Electric Vehicles (EV) and Smart Grid (SG) technologies to make bidirectional flow of energy possible, has contributed to this changing landscape in the distribution side of the traditional power grid. Trading energy among users in a decentralized fashion has been referred to as Peer- to-Peer (P2P) Energy Trading, which has attracted significant attention from the research and industry communities in recent times. However, previous research has mostly focused on engineering aspects of P2P energy trading systems, often neglecting the central role of users in such systems. P2P trading mechanisms require active participation from users to decide factors such as selling prices, storing versus trading energy, and selection of energy sources among others. The complexity of these tasks, paired with the limited cognitive and time capabilities of human users, can result sub-optimal decisions or even abandonment of such systems if performance is not satisfactory. Therefore, it is of paramount importance for P2P energy trading systems to incorporate user behavioral modeling that captures users’ individual trading behaviors, preferences, and perceived utility in a realistic and accurate manner. Often, such user behavioral models are not known a priori in real-world settings, and therefore need to be learned online as the P2P system is operating. In this thesis, we design novel algorithms for P2P energy trading. By exploiting a variety of statistical, algorithmic, machine learning, and behavioral economics tools, we propose solutions that are able to jointly optimize the system performance while taking into account and learning realistic model of user behavior. The results in this dissertation has been published in IEEE Transactions on Green Communications and Networking 2021, Proceedings of IEEE Global Communication Conference 2022, Proceedings of IEEE Conference on Pervasive Computing and Communications 2023 and ACM Transactions on Evolutionary Learning and Optimization 2023

    Taxi dispatching strategies with compensations

    Full text link
    [EN] Urban mobility efficiency is of utmost importance in big cities. Taxi vehicles are key elements in daily traffic activity. The advance of ICT and geo-positioning systems has given rise to new opportunities for improving the efficiency of taxi fleets in terms of waiting times of passengers, cost and time for drivers, traffic density, CO2 emissions, etc., by using more informed, intelligent dispatching. Still, the explicit spatial and temporal components, as well as the scale and, in particular, the dynamicity of the problem of pairing passengers and taxis in big towns, render traditional approaches for solving standard assignment problem useless for this purpose, and call for intelligent approximation strategies based on domain-specific heuristics. Furthermore, taxi drivers are often autonomous actors and may not agree to participate in assignments that, though globally efficient, may not be sufficently beneficial for them individually. This paper presents a new heuristic algorithm for taxi assignment to customers that considers taxi reassignments if this may lead to globally better solutions. In addition, as such new assignments may reduce the expected revenues of individual drivers, we propose an economic compensation scheme to make individually rational drivers agree to proposed modifications in their assigned clients. We carried out a set of experiments, where several commonly used assignment strategies are compared to three different instantiations of our heuristic algorithm. The results indicate that our proposal has the potential to reduce customer waiting times in fleets of autonomous taxis, while being also beneficial from an economic point of view.This work was supported by the Autonomous Region of Madrid (grant "MOSI-AGIL-CM" (S2013/ICE-3019) co-funded by EU Structural Funds FSE and FEDER), project "SURF" (TIN2015-65515-C4-X-R (MINECO/FEDER)) funded by the Spanish Ministry of Economy and Competitiveness, and through the Excellence Research Group GES2ME (Ref. 30VCPIGI05) co-funded by URJC and Santander Bank.Billhardt, H.; Fernandez Gil, A.; Ossowski, S.; Palanca CĂĄmara, J.; Bajo, J. (2019). Taxi dispatching strategies with compensations. Expert Systems with Applications. 122:173-182. https://doi.org/10.1016/j.eswa.2019.01.001S17318212

    Illiquidity and All Its Friends

    Get PDF
    The recent crisis was characterized by massive illiquidity. This paper reviews what we know and don't know about illiquidity and all its friends: market freezes, fire sales, contagion, and ultimately insolvencies and bailouts. It first explains why liquidity cannot easily be apprehended through a single statistics, and asks whether liquidity should be regulated given that a capital adequacy requirement is already in place. The paper then analyzes market breakdowns due to either adverse selection or shortages of financial muscle, and explains why such breakdowns are endogenous to balance sheet choices and to information acquisition. It then looks at what economics can contribute to the debate on systemic risk and its containment. Finally, the paper takes a macroeconomic perspective, discusses shortages of aggregate liquidity and analyses how market value accounting and capital adequacy should react to asset prices. It concludes with a topical form of liquidity provision, monetary bailouts and recapitalizations, and analyses optimal combinations thereof; it stresses the need for macroprudential policies.

    SCRAM: A Sharing Considered Route Assignment Mechanism for Fair Taxi Route Recommendations

    Get PDF
    International audienceRecommending routes for a group of competing taxi drivers is almost untouched in most route recommender systems. For this kind of problem, recommendation fairness and driving efficiency are two fundamental aspects. In the paper, we propose SCRAM, a sharing considered route assignment mechanism for fair taxi route recommendations. SCRAM aims to provide recommendation fairness for a group of competing taxi drivers, without sacrificing driving efficiency. By designing a concise route assignment mechanism, SCRAM achieves better recommendation fairness for competing taxis. By considering the sharing of road sections to avoid unnecessary competition, SCRAM is more efficient in terms of driving cost per customer (DCC). We test SCRAM based on a large number of historical taxi trajectories and validate the recommendation fairness and driving efficiency of SCRAM with extensive evaluations. Experimental results show that SCRAM achieves better recommendation fairness and higher driving efficiency than three compared approaches

    Illiquidity and All Its Friends.

    Get PDF
    The recent crisis was characterized by massive illiquidity. This paper reviews what we know and don't know about illiquidity and all its friends: market freezes, fire sales, contagion, and ultimately insolvencies and bailouts. It first explains why liquidity cannot easily be apprehended through a single statistics, and asks whether liquidity should be regulated given that a capital adequacy requirement is already in place. The paper then analyzes market breakdowns due to either adverse selection or shortages of financial muscle, and explains why such breakdowns are endogenous to balance sheet choices and to information acquisition. It then looks at what economics can contribute to the debate on systemic risk and its containment. Finally, the paper takes a macroeconomic perspective, discusses shortages of aggregate liquidity and analyses how market value accounting and capital adequacy should react to asset prices. It concludes with a topical form of liquidity provision, monetary bailouts and recapitalizations, and analyses optimal combinations thereof; it stresses the need for macroprudential policies.
    • 

    corecore