157 research outputs found

    Data-driven Step-to-step Dynamics based Adaptive Control for Robust and Versatile Underactuated Bipedal Robotic Walking

    Full text link
    This paper presents a framework for synthesizing bipedal robotic walking that adapts to unknown environment and dynamics error via a data-driven step-to-step (S2S) dynamics model. We begin by synthesizing an S2S controller that stabilizes the walking using foot placement through nominal S2S dynamics from the hybrid linear inverted pendulum (H-LIP) model. Next, a data-driven representation of the S2S dynamics of the robot is learned online via classical adaptive control methods. The desired discrete foot placement on the robot is thereby realized by proper continuous output synthesis capturing the data-driven S2S controller coupled with a low-level tracking controller. The proposed approach is implemented in simulation on an underactuated 3D bipedal robot, Cassie, and improved reference velocity tracking is demonstrated. The proposed approach is also able to realize walking behavior that is robustly adaptive to unknown loads, inaccurate robot models, external disturbance forces, biased velocity estimation, and unknown slopes

    The Spherical Inverted Pendulum with Pelvis Width in Polar Coordinates for Humanoid Walking Design

    Get PDF
    The present communication is a follow up and extension of the paper “The Spherical Inverted Pendulum: Exact Solutions of Gait and Foot Placement Estimation Based on Symbolic Computation” by the same author. The walk design is approached by a 3-D inverted pendulum in a polar coordinate system. The advantage of this model is to easily offer indications of the energy expenditure of an efficient walk. However, the disadvantages that were never recognized by authors previously using this model is that the COG trajectory has to pass through the supporting foot location. This causes an unnecessary and unrealistic waving in the frontal plane during gait. The problem is discussed here and solved by extending the model of the inverted pendulum by introducing the pelvis width and the distance between the hips of the two legs, without adding dynamical complexity

    From walking to running: robust and 3D humanoid gait generation via MPC

    Get PDF
    Humanoid robots are platforms that can succeed in tasks conceived for humans. From locomotion in unstructured environments, to driving cars, or working in industrial plants, these robots have a potential that is yet to be disclosed in systematic every-day-life applications. Such a perspective, however, is opposed by the need of solving complex engineering problems under the hardware and software point of view. In this thesis, we focus on the software side of the problem, and in particular on locomotion control. The operativity of a legged humanoid is subordinate to its capability of realizing a reliable locomotion. In many settings, perturbations may undermine the balance and make the robot fall. Moreover, complex and dynamic motions might be required by the context, as for instance it could be needed to start running or climbing stairs to achieve a certain location in the shortest time. We present gait generation schemes based on Model Predictive Control (MPC) that tackle both the problem of robustness and tridimensional dynamic motions. The proposed control schemes adopt the typical paradigm of centroidal MPC for reference motion generation, enforcing dynamic balance through the Zero Moment Point condition, plus a whole-body controller that maps the generated trajectories to joint commands. Each of the described predictive controllers also feature a so-called stability constraint, preventing the generation of diverging Center of Mass trajectories with respect to the Zero Moment Point. Robustness is addressed by modeling the humanoid as a Linear Inverted Pendulum and devising two types of strategies. For persistent perturbations, a way to use a disturbance observer and a technique for constraint tightening (to ensure robust constraint satisfaction) are presented. In the case of impulsive pushes instead, techniques for footstep and timing adaptation are introduced. The underlying approach is to interpret robustness as a MPC feasibility problem, thus aiming at ensuring the existence of a solution for the constrained optimization problem to be solved at each iteration in spite of the perturbations. This perspective allows to devise simple solutions to complex problems, favoring a reliable real-time implementation. For the tridimensional locomotion, on the other hand, the humanoid is modeled as a Variable Height Inverted Pendulum. Based on it, a two stage MPC is introduced with particular emphasis on the implementation of the stability constraint. The overall result is a gait generation scheme that allows the robot to overcome relatively complex environments constituted by a non-flat terrain, with also the capability of realizing running gaits. The proposed methods are validated in different settings: from conceptual simulations in Matlab to validations in the DART dynamic environment, up to experimental tests on the NAO and the OP3 platforms

    A Foot Placement Strategy for Robust Bipedal Gait Control

    Get PDF
    This thesis introduces a new measure of balance for bipedal robotics called the foot placement estimator (FPE). To develop this measure, stability first is defined for a simple biped. A proof of the stability of a simple biped in a controls sense is shown to exist using classical methods for nonlinear systems. With the addition of a contact model, an analytical solution is provided to define the bounds of the region of stability. This provides the basis for the FPE which estimates where the biped must step in order to be stable. By using the FPE in combination with a state machine, complete gait cycles are created without any precalculated trajectories. This includes gait initiation and termination. The bipedal model is then advanced to include more realistic mechanical and environmental models and the FPE approach is verified in a dynamic simulation. From these results, a 5-link, point-foot robot is designed and constructed to provide the final validation that the FPE can be used to provide closed-loop gait control. In addition, this approach is shown to demonstrate significant robustness to external disturbances. Finally, the FPE is shown in experimental results to be an unprecedented estimate of where humans place their feet for walking and jumping, and for stepping in response to an external disturbance
    • …
    corecore