4 research outputs found

    Universal features in panarthropod inter-limb coordination during forward walking

    Full text link
    Terrestrial animals must often negotiate heterogeneous, varying environments. Accordingly, their locomotive strategies must adapt to a wide range of terrain, as well as to a range of speeds in order to accomplish different behavioral goals. Studies in \textit{Drosophila} have found that inter-leg coordination patterns (ICPs) vary smoothly with walking speed, rather than switching between distinct gaits as in vertebrates (e.g., horses transitioning between trotting and galloping). Such a continuum of stepping patterns implies that separate neural controllers are not necessary for each observed ICP. Furthermore, the spectrum of \textit{Drosophila} stepping patterns includes all canonical coordination patterns observed during forward walking in insects. This raises the exciting possibility that the controller in \textit{Drosophila} is common to all insects, and perhaps more generally to panarthropod walkers. Here, we survey and collate data on leg kinematics and inter-leg coordination relationships during forward walking in a range of arthropod species, as well as include data from a recent behavioral investigation into the tardigrade \textit{Hypsibius exemplaris}. Using this comparative dataset, we point to several functional and morphological features that are shared amongst panarthropods. The goal of the framework presented in this review is to emphasize the importance of comparative functional and morphological analyses in understanding the origins and diversification of walking in Panarthropoda

    Selected Papers from IEEE ICASI 2019

    Get PDF
    The 5th IEEE International Conference on Applied System Innovation 2019 (IEEE ICASI 2019, https://2019.icasi-conf.net/), which was held in Fukuoka, Japan, on 11–15 April, 2019, provided a unified communication platform for a wide range of topics. This Special Issue entitled “Selected Papers from IEEE ICASI 2019” collected nine excellent papers presented on the applied sciences topic during the conference. Mechanical engineering and design innovations are academic and practical engineering fields that involve systematic technological materialization through scientific principles and engineering designs. Technological innovation by mechanical engineering includes information technology (IT)-based intelligent mechanical systems, mechanics and design innovations, and applied materials in nanoscience and nanotechnology. These new technologies that implant intelligence in machine systems represent an interdisciplinary area that combines conventional mechanical technology and new IT. The main goal of this Special Issue is to provide new scientific knowledge relevant to IT-based intelligent mechanical systems, mechanics and design innovations, and applied materials in nanoscience and nanotechnology
    corecore