3 research outputs found

    Reliability of the step phase detection using inertial measurement units: pilot study

    Get PDF
    The use of inertial sensors for the gait event detection during a long-distance walking, for example, on different surfaces and with different walking patterns, is important to evaluate the human locomotion. Previous studies demonstrated that gyroscopes on the shank or foot are more reliable than accelerometers and magnetometers for the event detection in case of normal walking. However, these studies did not link the events with the temporal parameters used in the clinical practice; furthermore, they did not clearly verify the optimal position for the sensors depending on walking patterns and surface conditions. The event detection quality of the sensors is compared with video, used as ground truth, according to the parameters proposed by the Gait and Clinical Movement Analysis Society. Additionally, the performance of the sensor on the foot is compared with the one on the shank. The comparison is performed considering both normal walking and deviations to the walking pattern, on different ground surfaces and with or without constraints on movements. The preliminary results show that the proposed methodology allows reliable detection of gait events, even in case of abnormal footfall and in slipping surface conditions, and that the optimal location to place the sensors is the shank

    Comparison of gait event detection from shanks and feet in single-task and multi-task walking of healthy older adults

    Get PDF
    Automatic and objective detection algorithms for gait events from MEMS Inertial Measurement Units data have been developed to overcome subjective inaccuracy in traditional visual observation. Their accuracy and sensitivity have been verified with healthy older adults, Parkinson's disease and spinal injured patients, using single-task gait exercises, where events are precise as the subject is focusing only on walking. Multi-task walking instead simulates a more realistic and challenging scenario where subjects perform secondary cognitive task while walking, so it is a better benchmark. In this paper, we test two algorithms based on shank and foot angular velocity data in single-task, dual-task and multi-task walking. Results show that both algorithms fail when the subject slows extremely down or pauses due to high cognitive and attentional load, and, in particular, the first stride detection error rate of the foot-based algorithm increases. Stride time is accurate with both algorithms regardless of walking types, but the shank-based algorithm leads to an overestimation on the proportion of swing phase in one gait cycle. Increasing the number of cognitive tasks also causes this error with both algorithms

    Gait phase detection using foot acceleration for estimating ground reaction force in long distance gait rehabilitation

    No full text
    In gait rehabilitation, achieving a gait analysis method using a simple system during long-distance walking is important. This method is required to measure all gait parameters in a single measurement. In addition, it is required that the measurement system is not spatially constrained. Therefore, we have been developing a gait tracking system with acceleration sensors for long-distance gait rehabilitation. In this paper, we describe a gait phase detection method using foot acceleration data for estimating ground reaction force during long-distance gait rehabilitation. To develop this method, we focused on the jerk of each foot in vertical axis direction. Using two accelerometers mounted on the left and right feet, we carried out three experiments. First, we measured the jerk of each foot during a free gait to verify the relation with the walking speed. Second, we measured the jerk of each foot during walking faster than normal for each subject. We then compared these results with the results of first experiments. Finally, we measured the jerk of each foot during left-right asymmetrical walking. The results confirmed that gait phase could be detected using the jerk of each leg, calculated from acceleration data in vertical axis direction. In particular, the timing of Heel-contact / Toe-off could be obtained with an average error of 0.03 s. And as a preliminary study, we estimated the ground reaction force using the one of the results
    corecore