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Abstract— Automatic and objective detection algorithms for
gait events from MEMS Inertial Measurement Units data
have been developed to overcome subjective inaccuracy in
traditional visual observation. Their accuracy and sensitivity
have been verified with healthy older adults, Parkinson’s disease
and spinal injured patients, using single-task gait exercises,
where events are precise as the subject is focusing only on
walking. Multi-task walking instead simulates a more realisitc
and challenging scenario where subjects perform secondary
cognitive task while walking, so it is a better benchmark. In this
paper, we test two algorithms based on shank and foot angular
velocity data in single-task, dual-task and multi-task walking.
Results show that both algorithms fail when the subject slows
extremely down or pauses due to high cognitive and attentional
load, and, in particular, the first stride detection error rate of
the foot-based algorithm increases. Stride time is accurate with
both algorithms regardless of walking types, but the shank-
based algorithm leads to an overestimation on the proportion
of swing phase in one gait cycle. Increasing the number of
cognitive tasks also causes this error with both algorithms.

I. INTRODUCTION

The quantitative and objective measurement of gait events,
such as Initial Contact (IC) and Terminal Contact (TC), is
important for physicians to better understand the situation
of a subject, since the temporal gait parameters such as
stance and swing duration, recommended [1] by the Gait
and Clinical Movement Analysis Society (GCMAS), are
calculated from the timing of IC and TC.

Traditional measurement via visual observation is subjec-
tive and imprecise. Therefore, high-precision motion tracking
systems such as Vicon and Qualisys were introduced into
some hospitals. However, high price and difficult mainte-
nance of those systems are unaffordable for small clinics,
thus limiting the number of patients benefiting form this
technology. On the other hand, the rapid development of
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MEMS-based inertial measurement units (IMU) has turned
them into a portable, affordable and reliable alternative for
clinics and home-based telerehabilitation.

Many algorithms have been developed to automatically
detect gait events from IMUs attached to the lower trunk
[2]–[4], the shank [5]–[8] and the foot [6], [9], [10]. It is
easier to detect gait events from shank and foot movement
analysis, because they are closer to the ground [11].

For gait events detection from shanks, several researches
[5]–[7] relied on the periodic pattern of angular velocity on
sagittal plane to identify IC and TC for normal walking. First,
peaks of angular velocity midswing were located, then the
first local minima before and after the peaks were located
and marked as TC and IC, respectively. Hundza et al. [8]
detected IC and TC with this method, but they suggested to
use the termination of forward swing (TOFS) instead of IC
to increase the accuracy and robustness when detecting gait
events for Parkinson’s Disease (PD) patients.

A similar concept was used for gait events detection from
feet. Jasiewicz et al. [6] located midswing at the peak of
foot angular velocity and identified the first minimum before
midswing as TC, while instead IC was identified at the zero-
crossing point after midswing. Also Park et al. [10] identified
the TC at the local minimum before midswing and the IC
at the point when the signal begins to level off, close to
the local minima or zero-crossing point after midswing but
not easily identifiable with any of them, since they heavily
denoised the angular velocity.

Foot acceleration has also been used in algorithms to
detect gait events, although in general this signal is more
noisy than foot angular velocity. Jasiewicz et al. [6] located
IC at the peak of foot vertical acceleration around peak
ankle dorsiflexion, and TC at the peak of forward-directed
acceleration around peak ankle plantarflexion. Kawamura et
al. [9] detected IC and TC events through the peaks of
vertical acceleration jerk.

The method locating TC and IC around angular velocity
peaks has gained popularity due to its simplicity, accuracy
and reliability. A benchmark shank angular velocity based
algorithm for PD patients [5] has a timing error of −8.7 ±
12.5ms for IC and −2.9 ± 26.8ms for TC detection; and
a sensitivity of 100% for both control and PD patients
during subthalamic nucleus deep brain stimulation, or 99.6%
without stimulation. In a study on abnormal footfalls of
patients classified as Grade D on the American Spinal Injury
Association (ASIA) impairment scale [6], timing error were
−53 ± 11ms for IC and 61 ± 10ms for TC detection
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from shank angular velocity, and −17 ± 18ms for IC and
27 ± 28ms for TC detection from foot angular velocity.
Besides, the algorithms have been tested under the condition
of wearing ankle orthosis and walking on snow surface [12].

To our knowledge, however, there is no study testing
how these methods perform with dual-task or multi-task
walking, a catogory of walking tests which requires subjects
to perform at least one cognitive or motor secondary task
during walking, e.g. counting. A multi-task condition pro-
vides a more realistic and challenging scenario for walking.
Specifically, older adults would have more difficulties in
keeping dynamic balance and have a higher risk of falling,
due to the higher cognitive and attentional load required. In
this scenario, a range of spatio-temporal gait parameters are
affected and the variability between strides is increased [13],
[14]. Multi-task walking presents challenges to automatic
gait event detection, as the subject may not keep a constant
walking frequency, and may slow down and even pause
during walking.

Objective of this paper is, thus, to verify and compare
accuracy and reliability of gait event detection methods using
IMU shank and foot angular velocity data, in single-task,
dual-task and multi-task walking.

II. MATERIALS AND METHODS

A. Experiment protocol

The experimental protocol includes the following three
types of walking:

1) Single-task (ST): walking straight for 7 meters;
2) Dual-task (DT): walking while back counting by 7

from a random number between 90 and 100;
3) Multi-task (MT): walking while back counting plus

holding a cup of water.
For DT and MT, subjects were instructed to prioritize walk-
ing. 3 repetitions for each exercise were executed, and the
subjects were asked to start each repetition with quiet stance
(QS) behind the starting line, then walk for 7m and stop at
the finishing line. Subjects were asked to wait at the finishing
line for the instruction from the experiment assistant, without
moving, while facing the direction of walking and standing
on both legs.

B. Experimental database

The experimental database was recorded during a series of
experimental sessions with pre-test and post-test to analyze
the mobility and postural stability of older adults, and its
relationship with environmental and individual factors like
daily social stimulation, or physical or mental activity. 100
Japanese older adults aged over 65, mentally and physically
healthy, were recruited and participated in the experiment
at the Institute of Development, Aging and Cancer, Tohoku
University, Japan. The experiment protocol was approved by
the ethical committees of Waseda University and Tohoku
University and all participants provided written informed
consent. Anthropometric data of the participants are shown
in Table I. In this study, we tested gait events detection

algorithm on the trials of ST, DT, and MT walking patterns
of 20 subjects randomly extracted from the database.

TABLE I
ANTHROPOMETRIC INFORMATION OF EXPERIMENTAL SUBJECTS

Gender N Age Weight Height

Female 60 68.4± 3.2 51.8± 7.2 152.4± 4.8
Male 40 69.3± 3.3 65.2± 9.1 165.0± 6.6
All 100 68.8± 3.2 57.1± 10.4 157.4± 8.3

C. Data recording system

The miniaturized (17x20x8mm; 3.9g) IMU, named
Waseda Bioinstrumentation 4R (WB-4R) [15], was used
for this study (Fig. 1). The WB-4R sensor consists of
triaxial MEMS-based gyroscope (LYPR540AH, ±400/ ±
1600dps), accelerometer (LIS331DLH,±8G), and magne-
tometer (HMC5843,±4 Gauss), measuring respectively the
angular velocity, acceleration and magnetic field. IMU sen-
sors were secured to the body with tight elastic bands.

Fig. 1. WB-4R IMU and elastic band for sensor placement.

Nine synchronized IMUs acquired data at 200Hz and sent
them via Bluetooth to a personal computer for data logging.
In this study, only gyroscope data from both shanks and feet
are used for gait event detection. Gyroscope data from the
chest is also used to exclude the strides for turning back
after the subject reaches the goal. The axes of the IMUs
are calibrated by software to have the x-axis pointing to the
front, y-axis pointing to the right of the body, and z-axis
pointing down (Fig. 2).
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Fig. 2. Sensor placement. In this research only data from sensors on both
shanks and feet were used for gait events detection, while data from the
chest IMU was used to detect turning at the end of the experiment.

Two high resolution digital web cameras (1920 × 1080,
20 fps) were placed on the front and on the side of the ex-
perimental area, to allow and facilitate manual segmentation
from video for control purposes.
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D. Walking period segmentation

The target of walking period segmentation is to exclude
data before and after the experiment, including the strides for
turning back after the end line is reached. The segmentation
algorithm uses angular velocity from both shanks and chest
as follows:

first, the magnitude of angular velocity on sagittal plane
is calculated and averaged between left and right shanks,

Ωs =
|ωls,y|+ |ωrs,y|

2
(1)

where ωls,y and ωrs,y are the angular velocities around
Y axis (medial-lateral axis) for the left and right shank
respectively. Absolute values and average between shanks
are used to smooth the signal during the walking period and
make it as continuous as possible, avoiding the entire walking
period to be divided into several short periods.

Then, a threshold at 0.5rad/s (about 30deg/s) is applied
to assess the movement of both shanks. The value of the
threshold is selected on empirical basis.

bi =

{
1, Ωs,i > 0.5rad/s
0, otherwise

(2)

Similarly, the turn at the end of the experiment is excluded
by applying 0.5rad/s threshold on the low pass filtered (5th
order, 1Hz cutoff Butterworth filter) chest angular velocity
on the transverse plane (ω′c,z in Equation 3), with 0 and 1
representing turning and non-turning respectively.

mi =

{
0, |ω′c,z| ≥ 0.5rad/s
1, otherwise

(3)

Fast turns in less than 500ms (100 samples) can happen
during walking, and are removed by morphological closure,

M = m • 11×100 = (m⊕ 11×100)	 11×100 (4)

where •, ⊕ and 	 represent morphological closure, dilation
and erosion, respectively. The non-turning mask M is then
applied on b to remove the turn from the walking phase
segmentation.

b′ = b ∧M (5)

Finally, walking periods shorter than 200 samples (about
1s) are merged by using morphological closure, to remove
pauses during walking, and the longest continuous period
measured after merging is selected as the walking period.

B = b′ • 11×200 (6)

After auto-segmentation, a quick manual check was con-
ducted to find problematic segmentations, by screening
graphs similar to Fig. 3 and the corresponding video. The
ones without walking, or with sensor error (extremely high
noise, wrong offset, or large range) were removed. For
graphs containing multiple walking parts, with unclear start
or stop of walking (e.g. pause in the 1st stride, or when
a subject stepped forward and backward right before the
“Start” instruction), and with turns in the middle of walking,
the walking period was manually modified.

Fig. 3. Walking period segmentation. Movements before “Start” and the
final turn after the test were trimmed.

E. Step event detection

Two gait event detection algorithms to find IC and TC
for each leg were developed, using respectively the angular
velocities of shanks and feet.

The algorithm to detect IC and TC from shank data is
based on [5], and follows these steps:

1) Apply 10th order 30Hz cutoff frequency Butterworth
low pass filter (LPF) on the shank angular velocity around
medial-lateral (Y) axis.

ω′y = LPF (ωs,y) (7)

2) Trim the data outside the walking period segmented in
Section II-D.

Ω =
{
ω′y,i : N0 ≤ i ≤ N1

}
(8)

where N0 and N1 are the start and stop frame numbers of
the walking period. After trimming, the new data length is
L = N1 −N0 + 1.

Bi =

{
1, N0 ≤ i ≤ N1

0, otherwise

3) Find fast swing part by setting threshold at 1rad/s.

si =

{
1, Ωi > 1rad/s
0, otherwise

(9)

The swing part shorter than 100ms is removed by morpho-
logical opening.

S = s ◦ 11×20 (10)

4) Find the positive edges (pe) and negative edges (ne)
of the swing part, and set 250ms search window before each
positive edge and after each negative edge.

S′ = [0,S, 0]
pe = {i : S′i+1 − S′i = 1}
ne = {i : S′i+2 − S′i+1 = −1}

(11)

5) Set the minimum within the search window before
positive edge as TC.

TCk = arg min
(pek−50)≤i<pek

(Ωi) (12)

where k represents the kth stride during 7m walking.



6) Set the first minima under threshold −0.5rad/s within
search window after negative edge as IC.

ICk = min({i | nek < i ≤ (nek + 50) :
(Ωi < Ωi−1) ∧ (Ωi ≤ Ωi+1)∧
(Ωi < −0.5rad/s)})

(13)

The algorithm to detect IC and TC from foot data is based
on [6]. It is similar to the shank-based algorithm, but in the
6th step the IC is identified at the first cross zero point after
midswing, instead of the first minima:

6) Set the first cross zero point within search window after
negative edge as IC.

ICk = min({i | nek < i ≤ (nek + 50) :
Ωi−1 > 0 ≥ Ωi})

(14)

The rest part of the foot-based algorithm is the same as the
shank-based algorithm, except replacing ωs,y in Equation 7
with ωf,y , the Y component of the foot angular velocity.

Fig. 4. Example of gait event detection with shank and foot angular
velocity, with first and last stride of each leg excluded.

Once ICs and TCs are found, they are used to divide
strides. One stride is defined as starting from IC, following
the stance phase and then swing phase, and finally finished
with the IC of the next stride. The ICs from left and right
legs are used to define the left and right stride, respectively.

Also, ICs and TCs are used to calculate the temporal
parameters, i.e. stride time length, stance phase length, swing
phase length, and double stance phase length. The first stride
starts from and last stride ends with quiet stance, therefore
are removed from the computation of temporal parameters.

F. Manual comparison

Manual segmentation was done by playing the video
recorded from the lateral camera, frame by frame to find
the IC and TC. The video is taken at 20 FPS so the error of
manual segmentation is ±50ms. Stride time length, stance
phase length, swing phase length, and double stance phase
length were also calculated from manual gait detection,
whose error is ±100ms. The IC, TC and gait temporal

parameters of each leg are compared with the result of
automatic gait event detection and the results is shown in
the following section.

III. RESULTS

Concerning the sensitivity (TPR) and positive predictive
value (PPV) of gait events detection, we found that the
algorithm based on foot data bears a much higher rate of
detection error compared with detection from shank data,
see Table II.

TABLE II
TPR AND PPV OF GAIT EVENTS DETECTION

Single task Dual task Triple task

Shank TPR 100.0% 99.4% 100.0%
Foot TPR 99.4% 97.7% 99.0%

Shank PPV 100.0% 100.0% 100.0%
Foot PPV 100.0% 97.7% 100.0%

Number of strides 161 174 197

Errors can be categorized into: unclear first stride, ex-
tremely slow walking speed, and pause in midswing.

Unclear first stride happens when the 1st stride is slow
and short with the angular velocity over 1rad/s shorter
than 100ms (false negative), or when the subject moves one
leg right before the experiment (false positive). Although
in this study the first and last stride are excluded from
the computation of temporal gait parameters, the error in
detection does affect the alignment between auto and manual
segmentation.

The second type of error is caused by extremely slow
walking speed, as shown in Fig. 5. The IC after the midswing
between 3 and 4s is missing, because the subject slowed
down the walking speed, considering the next answer for
counting, and took 400ms (150ms outside the 250ms search
window) to finally put the foot on the ground.

Fig. 5. Failure caused by low walking speed.

The last error type comes from pause in midswing. As
shown in Fig. 6, there are two continuous major peaks
between 5 and 6.5s. After checking the video, we understand
that they belong to one single stride because the subject
paused in midswing without putting the swing leg down to
the ground. Since the first peak is not recognized by the



algorithm as swing phase, the pause in midswing is instead
regarded as TC. In this specific case, the pausing causes TC
timing error but not error in stride detection. However, it can
easily result in error when the subject rests the paused swing
leg on the ground.

Fig. 6. Error and potential failure caused by pausing in midswing.

Concerning the accuracy, the timing of automatically
detected TC and IC are highly correlated with the manual
segmentation, regardless of the sensor position and the
number of tasks during walking. However we found that the
sampling frequency of the web cam differs from trial to trial
(Fig. 7), which causes the overall correlation coefficient to be
significantly low compared with the average of single trials.
Besides, although for both IC and TC the averaged R2 is over
0.99, R2 of TC is relatively lower than IC. This difference
is marginal for single-task (p in T-test less than 0.2), but is
significant for dual and triple tasks, with p less than 0.005
and 0.001 respectively.

TABLE III
R2 OF IC AND TC (MEAN ± STD FOR EACH TRIAL)

Single task Dual task Triple task

Shank IC 0.9997± 0.0003 0.9996± 0.0003 0.9997± 0.0004
Foot IC 0.9997± 0.0003 0.9996± 0.0003 0.9997± 0.0003

Shank TC 0.9963± 0.0112 0.9985± 0.0014 0.9979± 0.0019
Foot TC 0.9968± 0.0096 0.9988± 0.0006 0.9979± 0.0018

For stride time the error, defined as tauto − tmanual,
distributes around zero and within the error range of manual
segmentation (±100ms). Fig. 8 shows the error in stride
time, where the horizontal axis represents the segments used
for gait detection (S: shank; F: foot), as well as the types
of test (1: single-task; 2: dual tasks; 3: triple tasks). No
difference is found between shank and foot, and between
the single and multiple tasks.

However, for the duration of stance phase and double
stance phase, the timing error of both shank-based and foot-
based algorithm increases with the number of tasks in the
negative direction, leading to an underestimation on the
duration of stance phase. Moreover, the absolute timing error
of shank-based algorithm is significantly larger than the foot-
based algorithm. For example in Fig. 9 and 10, for S1 the
absolute median error is over 60ms while for F1 the error
is around and even smaller than 5ms.
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Fig. 7. Example of drifted difference between manual and auto gait events
detection due to unstable web cam sampling frequency. Both IC and TC
are reset by setting the new original point at [tm1, t̂a1], where tm1 is the
manually segmented timing of first IC/TC, while t̂a1 is the auto segmented
timing estimated by linear regression of each trial.
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Fig. 8. Error in stride time (auto - manual). The error range for manual
segmentation is marked with red dash lines.

The similar results are found for swing phase, though
the error is in the opposite direction with stance phase and
double stance phase: either increasing the number of tasks or
detecting from shanks instead of feet causes overestimation
on the duration of swing phase, see Fig. 11.

IV. CONCLUSION AND FUTURE WORKS

In this work, we tested two independent gait event de-
tection algorithms, one based on shank angular velocity and
one based on foot angular velocity, under the conditions of 7
meter single-task walking, dual-task walking (backcounting),
and multi-task walking (backcounting with holding a cup of
water). Automatic walking segmentation was implemented
to automatically trim data before the start and at the end of
the walking test when subject turns back.

The results show that both algorithms fail when the subject
suddenly slows down or pause during midswing, and the
error rate of the foot-based algorithm is much higher, espe-
cially in the detection of the first stride. Besides, although
both algorithms are accurate on stride time regardless of
the walking type, when estimating the duration of stance
phase, swing phase and double stance phase, we found that
the shank-based algorithm bears a larger bias compared to



S1 S2 S3 F1 F2 F3

-0.3

-0.2

-0.1

0

0.1

"
t [

s]

Fig. 9. Error in stance phase duration (auto - manual).
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Fig. 10. Error in double stance phase duration (auto - manual).

the foot-based one. Moreover, increasing the number of
cognitive tasks leads to a larger bias for both algorithms,
overestimating the swing phase time and underestimating the
stance and double stance phase duration.

In the future, we will improve both algorithms to increase
the gait events detection rate during multi-task walking,
detect the cause of and solve the bias in the duration of
swing phase, stance phase and double stance phase.
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