3 research outputs found

    Intelligent Management of Mobile Systems through Computational Self-Awareness

    Full text link
    Runtime resource management for many-core systems is increasingly complex. The complexity can be due to diverse workload characteristics with conflicting demands, or limited shared resources such as memory bandwidth and power. Resource management strategies for many-core systems must distribute shared resource(s) appropriately across workloads, while coordinating the high-level system goals at runtime in a scalable and robust manner. To address the complexity of dynamic resource management in many-core systems, state-of-the-art techniques that use heuristics have been proposed. These methods lack the formalism in providing robustness against unexpected runtime behavior. One of the common solutions for this problem is to deploy classical control approaches with bounds and formal guarantees. Traditional control theoretic methods lack the ability to adapt to (1) changing goals at runtime (i.e., self-adaptivity), and (2) changing dynamics of the modeled system (i.e., self-optimization). In this chapter, we explore adaptive resource management techniques that provide self-optimization and self-adaptivity by employing principles of computational self-awareness, specifically reflection. By supporting these self-awareness properties, the system can reason about the actions it takes by considering the significance of competing objectives, user requirements, and operating conditions while executing unpredictable workloads

    Resource-aware scheduling for 2D/3D multi-/many-core processor-memory systems

    Get PDF
    This dissertation addresses the complexities of 2D/3D multi-/many-core processor-memory systems, focusing on two key areas: enhancing timing predictability in real-time multi-core processors and optimizing performance within thermal constraints. The integration of an increasing number of transistors into compact chip designs, while boosting computational capacity, presents challenges in resource contention and thermal management. The first part of the thesis improves timing predictability. We enhance shared cache interference analysis for set-associative caches, advancing the calculation of Worst-Case Execution Time (WCET). This development enables accurate assessment of cache interference and the effectiveness of partitioned schedulers in real-world scenarios. We introduce TCPS, a novel task and cache-aware partitioned scheduler that optimizes cache partitioning based on task-specific WCET sensitivity, leading to improved schedulability and predictability. Our research explores various cache and scheduling configurations, providing insights into their performance trade-offs. The second part focuses on thermal management in 2D/3D many-core systems. Recognizing the limitations of Dynamic Voltage and Frequency Scaling (DVFS) in S-NUCA many-core processors, we propose synchronous thread migrations as a thermal management strategy. This approach culminates in the HotPotato scheduler, which balances performance and thermal safety. We also introduce 3D-TTP, a transient temperature-aware power budgeting strategy for 3D-stacked systems, reducing the need for Dynamic Thermal Management (DTM) activation. Finally, we present 3QUTM, a novel method for 3D-stacked systems that combines core DVFS and memory bank Low Power Modes with a learning algorithm, optimizing response times within thermal limits. This research contributes significantly to enhancing performance and thermal management in advanced processor-memory systems
    corecore