17 research outputs found

    Explorer-II: Wireless Self-Powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    Full text link

    Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    Full text link

    Autonomous pipeline monitoring and maintenance system: a RFID-based approach

    Get PDF
    Pipeline networks are one of the key infrastructures of our modern life. Proactive monitoring and frequent inspection of pipeline networks are very important for sustaining their safe and efficient functionalities. Existing monitoring and maintenance approaches are costly and inefficient because pipelines can be installed in large scale and in an inaccessible and hazardous environment. To overcome these challenges, we propose a novel Radio Frequency IDentification (RFID)-based Autonomous Maintenance system for Pipelines, called RAMP, which combines robotic, sensing, and RFID technologies for efficient and accurate inspection, corrective reparation, and precise geo-location information. RAMP can provide not only economical and scalable remedy but also safe and customizable solution. RAMP also allows proactive and corrective monitoring and maintenance of pipelines. One prominent advantage of RAMP is that it can be applied to a large variety of pipeline systems including water, sewer, and gas pipelines. Simulation results demonstrate the feasibility and superior performance of RAMP in comparison to the existing pipeline monitoring systems

    Sensor-based autonomous pipeline monitoring robotic system

    Get PDF
    The field of robotics applications continues to advance. This dissertation addresses the computational challenges of robotic applications and translations of actions using sensors. One of the most challenging fields for robotics applications is pipeline-based applications which have become an indispensable part of life. Proactive monitoring and frequent inspections are critical in maintaining pipeline health. However, these tasks are highly expensive using traditional maintenance systems, knowing that pipeline systems can be largely deployed in an inaccessible and hazardous environment. Thus, we propose a novel cost effective, scalable, customizable, and autonomous sensor-based robotic system, called SPRAM System (Sensor-based Autonomous Pipeline Monitoring Robotic System). It combines robot agent based technologies with sensing technologies for efficiently locating health related events and allows active and corrective monitoring and maintenance of the pipelines. The SPRAM System integrates RFID systems with mobile sensors and autonomous robots. While the mobile sensor motion is based on the fluid transported by the pipeline, the fixed sensors provide event and mobile sensor location information and contribute efficiently to the study of health history of the pipeline. In addition, it permits a good tracking of the mobile sensors. Using the output of event analysis, a robot agent gets command from the controlling system, travels inside the pipelines for detailed inspection and repairing of the reported incidents (e.g., damage, leakage, or corrosion). The key innovations of the proposed system are 3-fold: (a) the system can apply to a large variety of pipeline systems; (b) the solution provided is cost effective since it uses low cost powerless fixed sensors that can be setup while the pipeline system is operating; (c) the robot is autonomous and the localization technique allows controllable errors. In this dissertation, some simulation experiments described along with prototyping activities demonstrate the feasibility of the proposed system

    A leak detecting technique utilizing an abrupt and large pressure drop

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 29).The distribution of clean, drinkable water is a problem that has been addressed in all civilizations. The most common form of transportation today, is the use of pressurized pipelines to carry the water long distances, but damage to the pipes, such as leaks, can cause considerable losses. The difficulty in detecting these leaks prompted this work, which attempts to find a reliable method of recognizing a leak and suggest possible designs that could be implemented on a pipe-navigating robot. This design would use thin flaps, or "leaves," that would be forced outward by the rapid pressure drop formed in proximity to the leak. In order to determine the characteristic behavior of the system, several simulations, with a circular hole as the leak, were ran that showed that the significant pressure gradient existed only within distance on the order of the diameter of the leak. To validate these results, a high precision pressure sensor was used to try and measure the pressure gradient, but the pressure sensor was too large sense a pressure difference. Therefore, rubber strips were used to emulate the use of "leaves" to perceive the leak. This confirmed the simulation results, as the rubber strips had to be incredibly close to the leak in order to be affected. Furthermore, once the strip was pulled up against the leak, the friction created between the wall and the strip became strong enough that it could be utilized. Both the simulation and experimental results suggest that the leak detecting module should start near the leak. Next, instead of detecting the leak via a motion towards the leak, the module should instead take advantage of the large frictional force that occurs when the leaf has made contact with the leak. Further experiments could include testing the magnitude of the frictional force and creating a prototype.by James Torres.S.B

    Analysis and design of an in-pipe system for water leak detection

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 131-133).Leaks are a major factor for unaccounted water losses in almost every water distribution network. Pipeline leak may result, for example, from bad workmanship or from any destructive cause, due to sudden changes of pressure, corrosion, cracks, defects in pipes or lack of maintenance. The problem of leak becomes even more serious when it is concerned with the vital supply of fresh water to the community. In addition to waste of resources, contaminants may infiltrate into the water supply. The possibility of environmental health disasters due to delay in detection of water pipeline leaks have spurred research into the development of methods for pipeline leak and contamination detection. This thesis is on the analysis and design of a floating mobile sensor for leak detection in water distribution pipes. This work covers the study of two modules, namely a "floating body" along with its "sensing module". The Mobility Module or the floating body was carefully studied and designed using advanced CFD techniques to make the body as non-invasive to the flow as possible and to avoid signal corruption. In addition, experiments were carried out to investigate the effectiveness of using in-pipe measurements for leak detection in plastic pipes. Specifically, acoustic signals due to simulated leaks were measured and studied for designing a detection system to be deployed inside water networks of 100mm pipe size.by Dimitris M. Chatzigeorgiou.S.M
    corecore