2,916 research outputs found

    A Survey of Techniques for Improving Security of GPUs

    Full text link
    Graphics processing unit (GPU), although a powerful performance-booster, also has many security vulnerabilities. Due to these, the GPU can act as a safe-haven for stealthy malware and the weakest `link' in the security `chain'. In this paper, we present a survey of techniques for analyzing and improving GPU security. We classify the works on key attributes to highlight their similarities and differences. More than informing users and researchers about GPU security techniques, this survey aims to increase their awareness about GPU security vulnerabilities and potential countermeasures

    Interactive Visualization of the Largest Radioastronomy Cubes

    Full text link
    3D visualization is an important data analysis and knowledge discovery tool, however, interactive visualization of large 3D astronomical datasets poses a challenge for many existing data visualization packages. We present a solution to interactively visualize larger-than-memory 3D astronomical data cubes by utilizing a heterogeneous cluster of CPUs and GPUs. The system partitions the data volume into smaller sub-volumes that are distributed over the rendering workstations. A GPU-based ray casting volume rendering is performed to generate images for each sub-volume, which are composited to generate the whole volume output, and returned to the user. Datasets including the HI Parkes All Sky Survey (HIPASS - 12 GB) southern sky and the Galactic All Sky Survey (GASS - 26 GB) data cubes were used to demonstrate our framework's performance. The framework can render the GASS data cube with a maximum render time < 0.3 second with 1024 x 1024 pixels output resolution using 3 rendering workstations and 8 GPUs. Our framework will scale to visualize larger datasets, even of Terabyte order, if proper hardware infrastructure is available.Comment: 15 pages, 12 figures, Accepted New Astronomy July 201

    Viewpoints: A high-performance high-dimensional exploratory data analysis tool

    Full text link
    Scientific data sets continue to increase in both size and complexity. In the past, dedicated graphics systems at supercomputing centers were required to visualize large data sets, but as the price of commodity graphics hardware has dropped and its capability has increased, it is now possible, in principle, to view large complex data sets on a single workstation. To do this in practice, an investigator will need software that is written to take advantage of the relevant graphics hardware. The Viewpoints visualization package described herein is an example of such software. Viewpoints is an interactive tool for exploratory visual analysis of large, high-dimensional (multivariate) data. It leverages the capabilities of modern graphics boards (GPUs) to run on a single workstation or laptop. Viewpoints is minimalist: it attempts to do a small set of useful things very well (or at least very quickly) in comparison with similar packages today. Its basic feature set includes linked scatter plots with brushing, dynamic histograms, normalization and outlier detection/removal. Viewpoints was originally designed for astrophysicists, but it has since been used in a variety of fields that range from astronomy, quantum chemistry, fluid dynamics, machine learning, bioinformatics, and finance to information technology server log mining. In this article, we describe the Viewpoints package and show examples of its usage.Comment: 18 pages, 3 figures, PASP in press, this version corresponds more closely to that to be publishe

    GPU Accelerated Particle Visualization with Splotch

    Get PDF
    Splotch is a rendering algorithm for exploration and visual discovery in particle-based datasets coming from astronomical observations or numerical simulations. The strengths of the approach are production of high quality imagery and support for very large-scale datasets through an effective mix of the OpenMP and MPI parallel programming paradigms. This article reports our experiences in re-designing Splotch for exploiting emerging HPC architectures nowadays increasingly populated with GPUs. A performance model is introduced for data transfers, computations and memory access, to guide our re-factoring of Splotch. A number of parallelization issues are discussed, in particular relating to race conditions and workload balancing, towards achieving optimal performances. Our implementation was accomplished by using the CUDA programming paradigm. Our strategy is founded on novel schemes achieving optimized data organisation and classification of particles. We deploy a reference simulation to present performance results on acceleration gains and scalability. We finally outline our vision for future work developments including possibilities for further optimisations and exploitation of emerging technologies.Comment: 25 pages, 9 figures. Astronomy and Computing (2014

    MemShield: GPU-assisted software memory encryption

    Full text link
    Cryptographic algorithm implementations are vulnerable to Cold Boot attacks, which consist in exploiting the persistence of RAM cells across reboots or power down cycles to read the memory contents and recover precious sensitive data. The principal defensive weapon against Cold Boot attacks is memory encryption. In this work we propose MemShield, a memory encryption framework for user space applications that exploits a GPU to safely store the master key and perform the encryption/decryption operations. We developed a prototype that is completely transparent to existing applications and does not require changes to the OS kernel. We discuss the design, the related works, the implementation, the security analysis, and the performances of MemShield.Comment: 14 pages, 2 figures. In proceedings of the 18th International Conference on Applied Cryptography and Network Security, ACNS 2020, October 19-22 2020, Rome, Ital
    corecore