35 research outputs found

    Towards the Systematic Reporting of the Energy and Carbon Footprints of Machine Learning

    Full text link
    Accurate reporting of energy and carbon usage is essential for understanding the potential climate impacts of machine learning research. We introduce a framework that makes this easier by providing a simple interface for tracking realtime energy consumption and carbon emissions, as well as generating standardized online appendices. Utilizing this framework, we create a leaderboard for energy efficient reinforcement learning algorithms to incentivize responsible research in this area as an example for other areas of machine learning. Finally, based on case studies using our framework, we propose strategies for mitigation of carbon emissions and reduction of energy consumption. By making accounting easier, we hope to further the sustainable development of machine learning experiments and spur more research into energy efficient algorithms

    Ghost In the Grid: Challenges for Reinforcement Learning in Grid World Environments

    Get PDF
    The current state-of-the-art deep reinforcement learning techniques require agents to gather large amounts of diverse experiences to train effective and general models. In addition, there are also many other factors that have to be taken into consideration: for example, how the agent interacts with its environment; parameter optimization techniques; environment exploration methods; and finally the diversity of environments that is provided to an agent. In this thesis, we investigate several of these factors. Firstly we introduce Griddly, a high-performance grid-world game engine that provides a state-of-the-art combination of high performance and flexibility. We demonstrate that grid worlds provide a principled and expressive substrate for fundamental research questions in reinforcement learning, whilst filtering out noise inherent in physical systems. We show that although grid-worlds are constructed with simple rules-based mechanics, they can be used to construct complex open-ended, and procedurally generated environments. We improve upon Griddly with GriddlyJS, a web-based tool for designing and testing grid-world environments for reinforcement learning research. GriddlyJS provides a rich suite of features that assist researchers in a multitude of different learning approaches. To highlight the features of GriddlyJS we present a dataset of 100 complex escape-room puzzle levels. In addition to these complex puzzle levels, we provide human-generated trajectories and a baseline policy that can be run in a web browser. We show that this tooling enables significantly faster research iteration in many sub-fields. We then explore several areas of RL research that are made accessible by the features introduced by Griddly: Firstly, we explore learning grid-world game mechanics using deep neural networks. The {\em neural game engine} is introduced which has competitive performance in terms of sample efficiency and predicting states accurately over long time horizons. Secondly, {\em conditional action trees} are introduced which describe a method for compactly expressing complex hierarchical action spaces. Expressing hierarchical action spaces as trees leads to action spaces that are additive rather than multiplicative over the factors of the action space. It is shown that these compressed action spaces reduce the required output size of neural networks without compromising performance. This makes the interfaces to complex environments significantly simpler to implement. Finally, we explore the inherent symmetry in common observation spaces, using the concept of {\em geometric deep learning}. We show that certain geometric data augmentation methods do not conform to the underlying assumptions in several training algorithms. We provide solutions to these problems in the form of novel regularization functions and demonstrate that these methods fix the underlying assumptions
    corecore