3 research outputs found

    Detecting cycle slips in carrier-phase measurements of single frequency navigation receivers with different instabilities of reference oscillators

    Full text link
    ΠŸΠΎΡΡ‚ΡƒΠΏΠΈΠ»Π°: 29.06.2021. ΠŸΡ€ΠΈΠ½ΡΡ‚Π° Π² ΠΏΠ΅Ρ‡Π°Ρ‚ΡŒ: 12.07.2021.Received: 29.06.2021. Accepted: 12.07.2021.The use of carrier-phase measurements significantly increases the accuracy of solutions when using the measurements of navigation receivers. One of the problems in carrier-phase measurements is discontinuities (cycle slips) in the measurements. The existing algorithms of detection and compensation of cycle slips in carrier-phase measurements of a singlefrequency navigation receiver either require additional information (for example, Doppler measurements), or operate only in differential mode, or can only detect large cycle slips. The purpose of the research is the development of algorithms for detecting small cycle slips in carrier-phase measurements of single-frequency receivers without using additional information. We use methods of filtering of the trend in the carrier-phase measurements using polynomial or adaptive bases, as well as modified sparse recovery algorithms to estimate cycle slips in the difference between code and carrier-phase measurements. The algorithm which is used to search cycle slips in carrier-phase measurements depends on the quality of the reference oscillator of the navigation receiver. For receivers with high-stability reference oscillators (e.g. active hydrogen maser), one can use polynomial filtering of the trend, the filtering result directly detects discontinuities in carrier-phase measurements with a probability close to unity. For navigation receivers with low-stability reference oscillators (quartz reference oscillators), a modified algorithm for minimization of the total variation with filtering of the trend applied to the difference between the code and carrier-phase single-frequency measurements detects discontinuities in 1 cycle slip against the background of the noise component of comparable magnitude with a probability of 0.8. The results may be applied in navigation systems with single-frequency receivers with low stability reference oscillators, as well as in a posteriori processing of receivers’ measurements to correct carrier-phase measurements on the preprocessing stage.ИспользованиС Ρ„Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ позволяСт сущСствСнно ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ с использованиСм ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΎΠ². Одна ΠΈΠ· ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ ΠΏΡ€ΠΈ использовании Ρ„Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ – Ρ€Π°Π·Ρ€Ρ‹Π²Ρ‹ (скачки) Π² измСрСниях. Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ поиска ΠΈ компСнсации Ρ€Π°Π·Ρ€Ρ‹Π²ΠΎΠ² Π² Ρ„Π°Π·ΠΎΠ²Ρ‹Ρ… измСрСниях одночастотного Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ° Π»ΠΈΠ±ΠΎ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, допплСровскиС измСрСния), Π»ΠΈΠ±ΠΎ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅, Π»ΠΈΠ±ΠΎ ΠΌΠΎΠ³ΡƒΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ большиС Ρ€Π°Π·Ρ€Ρ‹Π²Ρ‹. ЦСль исслСдования – Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² обнаруТСния ΠΌΠ°Π»Ρ‹Ρ… Ρ€Π°Π·Ρ€Ρ‹Π²ΠΎΠ² Π² Ρ„Π°Π·ΠΎΠ²Ρ‹Ρ… измСрСниях одночастотных ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΎΠ² Π±Π΅Π· использования Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΡ ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌΠ΅Π½ΡΡŽΡ‰Π΅Π³ΠΎΡΡ Ρ‚Ρ€Π΅Π½Π΄Π° Π² Ρ„Π°Π·ΠΎΠ²Ρ‹Ρ… измСрСниях ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ° с использованиСм ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ»ΠΈ Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½Ρ‹Ρ… базисов, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ sparse recovery для ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ€Π°Π·Ρ€Ρ‹Π²ΠΎΠ² Π² разности ΠΊΠΎΠ΄ΠΎΠ²Ρ‹Ρ… ΠΈ Ρ„Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ. Алгоритм, примСняСмый для поиска Ρ€Π°Π·Ρ€Ρ‹Π²ΠΎΠ² Π² Ρ„Π°Π·ΠΎΠ²Ρ‹Ρ… измСрСниях, зависит ΠΎΡ‚ качСства ΠΎΠΏΠΎΡ€Π½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π° Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ°. Для ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΎΠ² с ΠΎΠΏΠΎΡ€Π½Ρ‹ΠΌ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ с высокой ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ (с Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΌ стандартом частоты) достаточно использованиС полиномиальной Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌΠ΅Π½ΡΡŽΡ‰Π΅Π³ΠΎΡΡ Ρ‚Ρ€Π΅Π½Π΄Π°, Ρ‡Ρ‚ΠΎ позволяСт нСпосрСдствСнно ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°Ρ‚ΡŒ Ρ€Π°Π·Ρ€Ρ‹Π²Ρ‹ Π² Ρ„Π°Π·ΠΎΠ²Ρ‹Ρ… измСрСниях с Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ, Π±Π»ΠΈΠ·ΠΊΠΎΠΉ ΠΊ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅. Для Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΎΠ² с ΠΎΠΏΠΎΡ€Π½Ρ‹ΠΌ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ с Π½ΠΈΠ·ΠΊΠΎΠΉ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ (ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΈ Π½Π° ΠΊΠ²Π°Ρ€Ρ†Π΅Π²ΠΎΠΌ стандартС частоты) ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠΎΠ»Π½ΠΎΠΉ Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΈ с Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ Ρ‚Ρ€Π΅Π½Π΄Π° ΠΊ разности ΠΊΠΎΠ΄ΠΎΠ²Ρ‹Ρ… ΠΈ Ρ„Π°Π·ΠΎΠ²Ρ‹Ρ… одночастотных ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ позволяСт ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ΡŒ Ρ€Π°Π·Ρ€Ρ‹Π²Ρ‹ Π² 1 Ρ†ΠΈΠΊΠ» Π½Π° Ρ„ΠΎΠ½Π΅ ΡˆΡƒΠΌΠΎΠ²ΠΎΠΉ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ сопоставимой Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ с Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ 0,8. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Ρ‹ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… систСм с одночастотными ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ°ΠΌΠΈ с Π½ΠΈΠ·ΠΊΠΈΠΌΠΈ трСбованиями ΠΊ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΎΠΏΠΎΡ€Π½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈ апостСриорной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ для ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ Ρ„Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π½Π° этапС ΠΏΡ€Π΅Π΄ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ.The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme No. FSRZ-2020-0011).Π Π°Π±ΠΎΡ‚Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° Π² Ρ€Π°ΠΌΠΊΠ°Ρ… государствСнного задания ΠœΠΈΠ½ΠΈΡΡ‚Π΅Ρ€ΡΡ‚Π²Π° Π½Π°ΡƒΠΊΠΈ ΠΈ Π²Ρ‹ΡΡˆΠ΅Π³ΠΎ образования Российской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΈ (ΠΊΠΎΠ΄ Π½Π°ΡƒΡ‡Π½ΠΎΠΉ Ρ‚Π΅ΠΌΡ‹ FSRZ-2020-0011)

    Detecting cycle slips in carrier-phase measurements of single frequency navigation receivers with different instabilities of reference oscillators

    Get PDF
    The use of carrier-phase measurements significantly increases the accuracy of solutions when using the measurements of navigation receivers. One of the problems in carrier-phase measurements is discontinuities (cycle slips) in the measurements. The existing algorithms of detection and compensation of cycle slips in carrier-phase measurements of a singlefrequency navigation receiver either require additional information (for example, Doppler measurements), or operate only in differential mode, or can only detect large cycle slips. The purpose of the research is the development of algorithms for detecting small cycle slips in carrier-phase measurements of single-frequency receivers without using additional information. We use methods of filtering of the trend in the carrier-phase measurements using polynomial or adaptive bases, as well as modified sparse recovery algorithms to estimate cycle slips in the difference between code and carrier-phase measurements. The algorithm which is used to search cycle slips in carrier-phase measurements depends on the quality of the reference oscillator of the navigation receiver. For receivers with high-stability reference oscillators (e.g. active hydrogen maser), one can use polynomial filtering of the trend, the filtering result directly detects discontinuities in carrier-phase measurements with a probability close to unity. For navigation receivers with low-stability reference oscillators (quartz reference oscillators), a modified algorithm for minimization of the total variation with filtering of the trend applied to the difference between the code and carrier-phase single-frequency measurements detects discontinuities in 1 cycle slip against the background of the noise component of comparable magnitude with a probability of 0.8. The results may be applied in navigation systems with single-frequency receivers with low stability reference oscillators, as well as in a posteriori processing of receivers’ measurements to correct carrier-phase measurements on the preprocessing stage.Β Pustoshilov A. S., Tsarev S. P. Detecting cycle slips in carrier-phase measurements of single frequency navigation receivers with different instabilities of reference oscillators. Ural Radio Engineering Journal. 2021;5(2):144–161. DOI: 10.15826/urej.2021.5.2.004.The use of carrier-phase measurements significantly increases the accuracy of solutions when using the measurements of navigation receivers. One of the problems in carrier-phase measurements is discontinuities (cycle slips) in the measurements. The existing algorithms of detection and compensation of cycle slips in carrier-phase measurements of a singlefrequency navigation receiver either require additional information (for example, Doppler measurements), or operate only in differential mode, or can only detect large cycle slips. The purpose of the research is the development of algorithms for detecting small cycle slips in carrier-phase measurements of single-frequency receivers without using additional information. We use methods of filtering of the trend in the carrier-phase measurements using polynomial or adaptive bases, as well as modified sparse recovery algorithms to estimate cycle slips in the difference between code and carrier-phase measurements. The algorithm which is used to search cycle slips in carrier-phase measurements depends on the quality of the reference oscillator of the navigation receiver. For receivers with high-stability reference oscillators (e.g. active hydrogen maser), one can use polynomial filtering of the trend, the filtering result directly detects discontinuities in carrier-phase measurements with a probability close to unity. For navigation receivers with low-stability reference oscillators (quartz reference oscillators), a modified algorithm for minimization of the total variation with filtering of the trend applied to the difference between the code and carrier-phase single-frequency measurements detects discontinuities in 1 cycle slip against the background of the noise component of comparable magnitude with a probability of 0.8. The results may be applied in navigation systems with single-frequency receivers with low stability reference oscillators, as well as in a posteriori processing of receivers’ measurements to correct carrier-phase measurements on the preprocessing stage.Β Pustoshilov A. S., Tsarev S. P. Detecting cycle slips in carrier-phase measurements of single frequency navigation receivers with different instabilities of reference oscillators. Ural Radio Engineering Journal. 2021;5(2):144–161. DOI: 10.15826/urej.2021.5.2.004

    GPS Signal Acquisition Based on Compressive Sensing and Modified Greedy Acquisition Algorithm

    No full text
    corecore