7 research outputs found

    Carrier Tracking using Extended Kalman Filters for GNSS Synthetic Aperture Processing with a Rotating Antenna

    Get PDF
    A single GNSS antenna moving along a known trajectory can be used to synthesize a virtual array in order to apply spatial diversity techniques, e.g. beamforming. With these techniques, referred as synthetic aperture (SA) techniques, the receiver can mitigate interfering signals, including multipath. The use of a single antenna element, instead of an antenna array, significantly reduces the hardware complexity, and there is no longer need for precise calibration and system synchronization. Before SA techniques can be used to process the GNSS signal, a critical practical issue must be addressed: the carrier Doppler frequency caused by the antenna motion only, that we have called โ€œrelativeโ€ Doppler, must be isolated from any other carrier frequency contribution. We have called the sum of all these possible contributions โ€œreferenceโ€ Doppler. In this paper, we propose two new techniques making use of the so-called extended Kalman filter (EKF), in order to compensate the reference Doppler at the correlation output. The first method, named EKF1, tracks the carrier frequency using a conventional FLL, and then uses its output to feed an EKF responsible for the reference Doppler estimation. The second method, named EKF2, is an ultra-tight integration solution in charge of the carrier tracking, while simultaneously estimating the reference Doppler component from the correlators output. A comparison of these new methods with two previously existing techniques, in terms of their impact on direction-of-arrival estimation techniques, is presented. Synthetic and real GPS L1 C/A signals are used in this comparison.Real signal measurements were obtained using a GPS antenna mounted on a mechanical rotating arm โ€“built in-houseโ€“ to implement an approximately uniform circular movement

    Improving Navigation in GNSS-challenging Environments: Multi-UAS Cooperation and Generalized Dilution of Precision

    Get PDF
    This paper presents an approach to tackle navigation challenges for Unmanned Aircraft Systems flying under non nominal GNSS coverage. The concept used to improve navigation performance in these environments consists in using one or more cooperative platforms and relative sensing measurements (based on vision and/or ranging) to the navigation aid. The paper details the cooperative navigation filter which can exploit multiple cooperative platforms and multiple relative measurements, while also using partial GNSS information. The achievable navigation accuracy can be predicted using the concept of "generalized dilution of precision", which derives from applying the idea of dilution of precision to the mathematical structure of the cooperative navigation filter. Values and trends of generalized dilution of precision are discussed as a function of the relative geometry in common GNSS-challenging scenarios. Finally, navigation performance is assessed based on simulations and on multi-drone flight tests

    Wi-Fi Sensing: Applications and Challenges

    Full text link
    Wi-Fi technology has strong potentials in indoor and outdoor sensing applications, it has several important features which makes it an appealing option compared to other sensing technologies. This paper presents a survey on different applications of Wi-Fi based sensing systems such as elderly people monitoring, activity classification, gesture recognition, people counting, through the wall sensing, behind the corner sensing, and many other applications. The challenges and interesting future directions are also highlighted

    Design of an Automotive IoT Device to Improve Driver Fault Detection Through Road Class Estimation

    Get PDF
    Unsafe driver habits pose a serious threat to all vehicles on the road. This thesis outlines the development of an automotive IoT device capable of monitoring and reporting adverse driver habits to mitigate the occurrence of unsafe practices. The driver habits targeted are harsh braking, harsh acceleration, harsh cornering, speeding and over revving the vehicle. With the intention of evaluating and expanding upon the industry method of fault detection, a working prototype is designed to handle initialization, data collection, vehicle state tracking, fault detection and communication. A method of decoding the broadcasted messages on the vehicle bus is presented and unsafe driver habits are detected using static limits. An analysis of the initial designโ€™s performance revealed that the industry method of detecting faults fails to account for the vehicleโ€™s speed and is unable to detect faults on all roadways. A framework for analyzing fault profiles at varying speeds is presented and yields the relationship between fault magnitude and speed. A method of detecting the type of road driven was developed to dynamically assign fault limits while the vehicle traveled on a highway, city street or in traffic. The improved design correctly detected faults along all types of roads and proved to greatly expand upon the current method of fault detection used by the automotive IoT industry today

    Wi-Fi Sensing: Applications and Challenges

    Get PDF
    Wi-Fi technology has strong potentials in indoor and outdoor sensing applications, it has several important features which makes it an appealing option compared to other sensing technologies. This paper presents a survey on different applications of Wi-Fi-based sensing systems such as elderly people monitoring, activity classification, gesture recognition, people counting, through the wall sensing, behind the corner sensing, and many other applications. The challenges and interesting future directions are also highlighted

    Multiple Antenna-based GPS Multipath Mitigation using Code Carrier Information

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐ๊ณตํ•™๋ถ€, 2013. 8. ์ตœ์ง„์˜.์—ฌ๋Ÿฌ ์‘์šฉ๋ถ„์•ผ์—์„œ ์ˆ˜ ์–ต๋Œ€์˜ GPS(Global Positioning System) ์ˆ˜์‹ ๊ธฐ๊ฐ€ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์ง€๋งŒ, GPS์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์œ„์น˜๊ธฐ๋ฐ˜ ์„œ๋น„์Šค(LBS: Location Based Services)์—์„œ๋Š” ์—ฌ์ „ํžˆ ๋‹ค์ค‘๊ฒฝ๋กœ ์˜ค์ฐจ์™€ ๊ฐ™์€ ์ „ํŒŒ ๋ฐฉํ•ด๊ฐ€ ๋ฐœ์ƒํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ์˜ค์ฐจ๋“ค๋กœ ์ธํ•˜์—ฌ ์ƒ๊ด€ํ•จ์ˆ˜์˜ ์™œ๊ณก์€ ๊ฑฐ๋ฆฌ ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ ์ธํ•˜์—ฌ GPS์„ ์ด์šฉํ•œ ํ•ญ๋ฒ• ์‹œ์Šคํ…œ์—์„œ์˜ ์œ„์น˜ ์ •ํ™•๋„ ํ–ฅ์ƒ์„ ์œ„ํ•˜์—ฌ, ๋‹ค์ค‘๊ฒฝ๋กœ ์˜ค์ฐจ๋ฅผ ํšจ๊ณผ ์ ์œผ๋กœ ์ค„์ด๊ธฐ ์œ„ํ•œ ๊ฐ•์ธํ•˜๊ณ  ํ˜„์‹ค์ ์ธ ๋ฐฉ๋ฒ•์ด ์š”๊ตฌ๋œ๋‹ค. ๋‹ค์ค‘๊ฒฝ๋กœ๋Š” GPS ์‹ ํ˜ธ๊ฐ€ ์žฅ์• ๋ฌผ์— ์˜ํ•ด ๋ฐ˜์‚ฌ๋‚˜ ํšŒ์ ˆ ๋˜์–ด ์ˆ˜์‹ ๊ธฐ์— ๋„์ฐฉํ•  ๋•Œ ์ž˜ ์ผ์–ด๋‚œ๋‹ค. ๊ฐ€์‹œ๊ฒฝ๋กœ ์‹ ํ˜ธ์— ๊ฒฐํ•ฉ๋œ ๋‹ค์ค‘๊ฒฝ๋กœ ์‹ ํ˜ธ๋Š” GPS ์ˆ˜์‹ ๊ธฐ์˜ ์ƒ๊ด€ํ•จ์ˆ˜์˜ ๋ณ€ํ˜•์„ ์ผ์œผํ‚ค๋ฉฐ ๊ถ๊ทน์ ์œผ๋กœ ์ฐจ๋ณ„ํ•จ์ˆ˜์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฏ€๋กœ ๊ฑฐ๋ฆฌ์˜ค์ฐจ๋ฅผ ๋ฐœ์ƒ์‹œํ‚จ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋‹ค์ค‘๊ฒฝ๋กœ ์˜ค์ฐจ๋Š” ์œ„์„ฑํ•ญ๋ฒ• ์‹œ์Šคํ…œ์—์„œ์˜ ์œ„์น˜์ •ํ™•๋„ ํ–ฅ์ƒ์„ ์œ„ํ•ด ํ•ด๊ฒฐ ๋˜์–ด์•ผ ๋  ๋ฌธ์ œ๋กœ ์Ÿ์ ์ด ๋˜์–ด์™”๋‹ค. ์ตœ๊ทผ์—๋Š” ์ด๋Ÿฌํ•œ ์ „ํŒŒ ๊ฐ„์„ญ์‹ ํ˜ธ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•˜์—ฌ ๋‹ค์ค‘๊ฐœ์˜ ์•ˆํ…Œ๋‚˜(Multiple Antenna)๋ฅผ ์ด์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์ด GPS ํ•ญ๋ฒ• ์‹œ์Šคํ…œ์—์„œ ์ด์šฉ๋˜๊ณ  ์žˆ๋‹ค. ํ˜„ ์‹œ์ ์—์„œ, ๋‹ค์ค‘๊ฐœ์˜ ์•ˆํ…Œ๋‚˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์‘์šฉ๋ถ„์•ผ๋Š” ์ฃผ๋กœ ํ•™์ˆ ์ ์ธ ์—ฐ๊ตฌ ๋ฐ ๋ณต์žกํ•œ ๊ตฐ์‚ฌ์šฉ ์—ฐ๊ตฌ๋กœ ์ฃผ๋กœ ์ง„ํ–‰ ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์•ˆํ…Œ๋‚˜ ์ œ์ž‘ ๋ฐฉ๋ฒ• ๋ฐ ์ „๊ธฐ์  ์‹œ์Šคํ…œ์˜ ๊ธ‰๊ฒฉํ•œ ๋ฐœ์ „์œผ๋กœ ์ธํ•ด ์ด์ „์˜ ํ•˜๋“œ์›จ์–ด ๋ฐ ์†Œํ”„์›จ์–ด์ ์ธ ๋ฌธ์ œ๋ฅผ ์‰ฝ๊ฒŒ ํ•ด๊ฒฐ ๋จ์— ๋”ฐ๋ผ ๊ฐ€๊นŒ์šด ๋ฏธ๋ž˜์—๋Š” ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ๊ธฐ๋ฐ˜์˜ ์ˆ˜์‹ ๊ธฐ๊ฐ€ ๋ฏผ๊ฐ„ ์ƒ์šฉ๋ถ„์•ผ๋กœ ํ™•๋Œ€ ๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ์ด ๋œ๋‹ค. ๋˜ํ•œ ์•ˆํ…Œ๋‚˜ ์ˆ˜์‹ ๊ธฐ RF๋‹จ์˜ ์†Œํ˜•ํ™”๋กœ ์ธํ•˜์—ฌ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ์‹œ์Šคํ…œ์—์„œ์˜ ์•ˆํ…Œ๋‚˜ ํฌ๊ธฐ ๋ฌธ์ œ์  ๋˜ํ•œ ํ•ด๊ฒฐ ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค์ค‘ GPS ์•ˆํ…Œ๋‚˜๋ฅผ ์ด์šฉํ•˜์—ฌ GPS ํ•ญ๋ฒ•์—์„œ์˜ ์ „ํŒŒ ๊ฐ„์„ญ ๋ฐ ๋‹ค์ค‘๊ฒฝ๋กœ ์˜ค์ฐจ ๊ฐ์‡„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ฐ•ํ•œ ์ „ํŒŒ ๊ฐ„์„ญ ๋ฐ ๋‹ค์ค‘๊ฒฝ๋กœ ์‹ ํ˜ธ์— ๋Œ€ํ•˜์—ฌ ๊ณต๊ฐ„ ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์€ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜๋ฅผ ๊ธฐ๋ฐ˜์˜ ์ฝ”๋“œ ์ผ€๋ฆฌ์–ด ์ •๋ณด๋ฅผ ์ด์šฉํ•œ ๊ณต๊ฐ„์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์œผ๋กœ ์ „ํŒŒ ๊ฐ„์„ญ ๋ฐ ๋‹ค์ค‘๊ฒฝ๋กœ ์˜ค์ฐจ๋ฅผ ์™„ํ™”์‹œํ‚ค๋ฉฐ, ๋˜ํ•œ ๋น”ํ˜•์„ฑ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์‹ ํ˜ธ ๋Œ€ ์žก์Œ ๋น„์œจ์„ ์ตœ๋Œ€๋กœ ํ•œ๋‹ค. ์ œ์•ˆ๋œ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์†Œํ”„ํŠธ์›จ์–ด GPS ์ˆ˜์‹ ๊ธฐ๋ฅผ ์‚ฌ์šฉ๋œ๋‹ค. ์†Œํ”„ํŠธ์›จ์–ด GPS ์ˆ˜์‹ ๊ธฐ๋ฅผ ์ด์šฉํ•œ ์‹ ํ˜ธ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์€ ์ƒˆ๋กœ์šด ์žฅ๋น„์˜ ์ œํ’ˆํ™” ๋ฐ GPS ์‹ ํ˜ธ ๋ถ„์„์— ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ GPS ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋ถ„์„ ๋ฐ ์ˆ˜์‹ ๊ธฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ฒ€์ฆ ๋“ฑ ์—ฌ๋Ÿฌ ์—ฐ๊ตฌ๋ถ„์•ผ์—์„œ ๋„๋ฆฌ ์ด์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์˜ ์„ฑ๋Šฅ ๊ฒ€์ฆ์„ ์œ„ํ•˜์—ฌ ์ปดํ“จํ„ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ๊ฐ€๊ณต IF ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•œ ์†Œํ”„ํŠธ์›จ์–ด ์ˆ˜์‹ ๊ธฐ ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ์ „ํŒŒ ๊ฐ„์„ญ ๋ฐ ๋‹ค์ค‘๊ฒฝ๋กœ ์˜ค์ฐจ ๊ฐ์‡„์— ๊ฐ•์ธํ•˜๋ฉฐ, GPS ํ•ญ๋ฒ•์‹œ์Šคํ…œ์—์„œ์˜ ์œ„์น˜์ •ํ™•๋„ ํ–ฅ์ƒ์— ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ๊ทธ๋กœ๋ฏ€๋กœ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ์ฐจ๋Ÿ‰ ํ•ญ๋ฒ• ์‘์šฉ๋ถ„์•ผ์—์„œ ๋ฐฉํ•ด์‹ ํ˜ธ ๊ฐ์‡„์— ์‚ฌ์šฉ๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค.Although hundreds of millions of receivers are used all around the world, the performance of location-based services(LBS) provided by GPS is still compromised by interference which includes unintentional distortion of correlation function due to multipath propagation. For this reason, the requirement for proper mitigation techniques becomes crucial in GPS receivers for robust, accurate, and reliable positioning. Multipath propagation can easily occur when environmental features cause combinations of reflected and diffracted replica signals to arrive at the receiving antenna. These signals which are combined with the original line-of-sight (LOS) signal can cause distortion of the receiver correlation function and ultimately distortion of the discrimination functionhence, errors in range estimation occur. Therefore, multipath error in the satellite navigation system to improve location accuracy is an important issue to be addressed. Recently, interference mitigation techniques utilizing multiple antennas have gained significant attention in GPS navigation systems. Although at the time of this dissertation, employing multiple antennas in GPS applications is mostly limited to academic research and possibly complicated military applications, it is expected that in the near future, antenna array-based receivers will also become widespread in civilian commercial markets. Rapid advances in antenna design technology and electronic systems make previously challenging problems in hardware and software easier to solve. Furthermore, due to the significant effort devoted to miniaturization of RF front-ends and antennas, the size of antenna array based receivers will no longer be a problem. Given the above, this dissertation investigates multiple antenna-based GPS the interference suppression and multipath mitigation. Firstly, a modified spatial processing technique is proposed that is capable of mitigating both high power interference and coherent and correlated GPS multipath signals. The use of spatial-temporal processing for GPS multipath mitigation is studied. A new method utilizing code carrier information based on multiple antennas is proposed to deal with highly correlated multipath components and to increase the signal to noise ratio of the beamformer by synthesizing antenna array processing. In order to verify the proposed method, a software defined GPS receiver is used. Software-based GPS signal processing technique has already produced benefits for prototyping new equipment and analyzing GPS signal quality. Not only do such receivers provide an excellent research tool for GPS algorithm verification, they also improve GPS receiver performance in a wide range of conditions. In this dissertation, the enhancement of the proposed method is presented in terms of the simulations and software defined GPS receiver using simulated IF data. From the result, the proposed method is robust to interference suppression, and multipath mitigation, and shows a strong possibility for use in improving location accuracy. Thus, this method can be employed to mitigate interference signals in vehicular navigation applications.Contents Abstract i Acknowledgements iv Contents v List of Figures x List of Tables xiv Chapter 1.Introduction 1 1.1 Introduction 1 1.2 Background and Motivation 2 1.2.1 Strong Narrowband and Wideband Interference 6 1.2.2 Multipath 7 1.3 Antenna Array Processing in GPS 11 1.3.1 Interference Suppression 11 1.3.2 Multipath Mitigation 13 1.4 Software-Defined GPS Receiver 15 1.5 Objective and Contribution 17 1.6 Dissertation Outline 18 Chapter 2. Global Positioning System 21 2.1 GPS System Overview 21 2.2 Basic Concept of GSP 25 2.3 Determining Satellite to User 28 2.4 Calculation of User Position 33 2.5 GPS Error Sources 40 2.5.1 Receiver Clock Bias 41 2.5.2 Satellite Clock Bias 42 2.5.3 Atmospheric Delay 43 2.5.4 Ephemeris Delay 46 2.5.5 Multipath Error 47 2.5.6 Receiver Noise 55 2.6 Summary 55 Chapter 3. Antenna Array Processing and Beamforming 56 3.1 Background on Antenna Arrays and Beamformers 56 3.1.1 Signal Model 59 3.2 Conventional Optimum Beamformers 69 3.2.1 Minimum Variance Distortionless Response Beamformer 69 3.2.2 Maximum Likelihood Estimator 71 3.2.3 Maximum Signal to Noise Interference Ratio Beamformer 72 3.2.4 Minimum Power Distortionless Response Beamformer 75 3.2.5 Linear Constrained Minimum Variance and Linear Constrained Minimum Power Beamformers 76 3.2.6 Eigenvector Beamformer 77 3.3 Space-Time Processing 81 3.4 Array Calibration 85 3.5 Summary 86 Chapter 4. Multipath Mitigation using Code-Carrier Information 87 4.1 Introduction 87 4.2 Interference Suppression and Multipath Mitigation 88 4.2.1 Signal Model 88 4.2.2 Interference Suppression by Subspace Projection 90 4.2.3 Multipath Mitigation by Subspace Projection 93 4.3 Determination of Multipath Satellites using Code-carrier Information 95 4.4 MSR Beamformer 100 4.5 Simulation Results 102 4.5.1 Subspace Projection and Beamforming 102 4.5.2 Performance Comparison 109 4.6 Summary 111 Chapter 5. Performance Verification using Software-Defined GPS Receiver 113 5.1 Introduction 113 5.2 Software-Defined GPS Receiver Methodology 114 5.2.1 Software-Defined GPS Receiver Signals 115 5.2.2 Software-Defined GPS Receiver Modules 116 5.3 Architecture of Software-Defined GPS Receiver 120 5.3.1 GPS Signal Generation 120 5.3.2 Interference Signal Generation 124 5.3.1 Front-End Signal Processing 125 5.4 Experimental Results 126 5.3.1 Static Environments 128 5.3.2 Dynamic Environments 133 5.5 Summary 136 Chapter 6. Conclusions and Future Work 138 6.1 Conclusions 138 6.2 Future Work 139 Bibliography 142 Appendix 168 Abstract in Korean 170 Acknowledgments 173Docto

    Wi-Fi based people tracking in challenging environments

    Get PDF
    People tracking is a key building block in many applications such as abnormal activity detection, gesture recognition, and elderly persons monitoring. Video-based systems have many limitations making them ineffective in many situations. Wi-Fi provides an easily accessible source of opportunity for people tracking that does not have the limitations of video-based systems. The system will detect, localise, and track people, based on the available Wi-Fi signals that are reflected from their bodies. Wi-Fi based systems still need to address some challenges in order to be able to operate in challenging environments. Some of these challenges include the detection of the weak signal, the detection of abrupt people motion, and the presence of multipath propagation. In this thesis, these three main challenges will be addressed. Firstly, a weak signal detection method that uses the changes in the signals that are reflected from static objects, to improve the detection probability of weak signals that are reflected from the personโ€™s body. Then, a deep learning based Wi-Fi localisation technique is proposed that significantly improves the runtime and the accuracy in comparison with existing techniques. After that, a quantum mechanics inspired tracking method is proposed to address the abrupt motion problem. The proposed method uses some interesting phenomena in the quantum world, where the person is allowed to exist at multiple positions simultaneously. The results show a significant improvement in reducing the tracking error and in reducing the tracking delay
    corecore