2,838 research outputs found

    Addition of or switch to insulin therapy in people treated with glucagon-like peptide-1 receptor agonists : a real-world study in 66 583 patients

    Get PDF
    Background Real world outcomes of addition or switch to insulin therapy in type 2 diabetes (T2DM) patients on glucagon-like paptide-1 receptor agonist (GLP-1RA) with inadequately controlled hyperglycaemia, are not known. Materials and methods Patients with T2DM (n = 66 583) with a minimum of 6 months of GLP-1RA treatment and without previous insulin treatment were selected. Those who added insulin (n = 39 599) or switched to insulin after GLP-1RA cessation (n = 4706) were identified. Adjusted changes in glycated haemoglobin (HbA1c), weight, systolic blood pressure (SBP), and LDL cholesterol were estimated over 24 months follow-up. Results Among those who continued with GLP-1RA treatment without adding or switching to insulin, the highest adjusted mean HbA1c change was achieved within 6 months, with no further glycaemic benefits observed during 24 months of follow-up. Addition of insulin within 6 months of GLP-1RA initiation was associated with 18% higher odds of achieving HbA1c <7% at 24 months, compared with adding insulin later. At 24 months, those who added insulin reduced HbA1c significantly by 0.55%, while no glycaemic benefit was observed in those who switched to insulin. Irrespective of intensification with insulin, weight, SBP and LDL cholesterol were significantly reduced by 3 kg, 3 mm Hg, and 0.2 mmol/L, respectively, over 24 months. Conclusions Significant delay in intensification of treatment by addition of insulin is observed in patients with T2DM inadequately controlled with GLP-1RA. Earlier addition of insulin is associated with better glycaemic control, while switching to insulin is not clinically beneficial during 2 years of treatment. Non-responding patients on GLP-1RA would benefit from adding insulin therapy, rather than switching to insulin

    Use and effectiveness of dapagliflozin in routine clinical practice. An Italian multicenter retrospective study

    Get PDF
    In randomized controlled trials (RCTs), sodium-glucose co-transporter-2 (SGLT2) inhibitors have been shown to confer glycaemic and extra-glycaemic benefits. The DARWIN-T2D (DApagliflozin Real World evIdeNce in Type 2 Diabetes) study was a multicentre retrospective study designed to evaluate the baseline characteristics of patients receiving dapagliflozin vs those receiving selected comparators (dipeptidyl peptidase-4 inhibitors, gliclazide, or glucagon-like peptide-1 receptor agonists), and drug effectiveness in routine clinical practice. From a population of 281 217, the analysis included 17 285 patients initiating dapagliflozin or comparator glucose-lowering medications (GLMs), 6751 of whom had a follow-up examination. At baseline, participants starting dapagliflozin were younger, had a longer disease duration, higher glycated haemoglobin (HbA1c) concentration, and a more complex history of previous GLM use, but the clinical profile of patients receiving dapagliflozin changed during the study period. Dapagliflozin reduced HbA1c by 0.7%, body weight by 2.7 kg, and systolic blood pressure by 3.0 mm Hg. Effects of comparator GLMs were also within the expected range, based on RCTs. This real-world study shows an initial channelling of dapagliflozin to difficult-to-treat patients. Nonetheless, dapagliflozin provided significant benefits with regard to glucose control, body weight and blood pressure that were in line with findings from RCTs

    Novel skeletal effects of glucagon-like peptide-1 (GLP-1) receptor agonists

    Get PDF
    Type 2 diabetes mellitus (T2DM) leads to bone fragility and predisposes to increased risk of fracture, poor bone healing and other skeletal complications. In addition, some anti-diabetic therapies for T2DM can have notable detrimental skeletal effects. Thus, an appropriate therapeutic strategy for T2DM should not only be effective in re-establishing good glycaemic control but also in minimising skeletal complications. There is increasing evidence that glucagon-like peptide-1 receptor agonists (GLP-1RAs), now greatly prescribed for the treatment of T2DM, have beneficial skeletal effects although the underlying mechanisms are not completely understood. This review provides an overview of the direct and indirect effects of GLP-1RAs on bone physiology, focusing on bone quality and novel mechanisms of action on the vasculature and hormonal regulation. The overall experimental studies indicate significant positive skeletal effects of GLP-1RAs on bone quality and strength although their mechanisms of actions may differ according to various GLP-1RAs and clinical studies supporting their bone protective effects are still lacking. The possibility that GLP-1RAs could improve blood supply to bone, which is essential for skeletal health, is of major interest and suggests that GLP-1 anti-diabetic therapy could benefit the rising number of elderly T2DM patients with osteoporosis and high fracture risk

    Continued efforts to translate diabetes cardiovascular outcome trials into clinical practice

    Get PDF
    Diabetic patients suffer from a high rate of cardiovascular events and such risk increases with HbA1c. However, lowering HbA1c does not appear to yield the same benefit on macrovascular endpoints, as observed for microvascular endpoints. As the number of glucose-lowering medications increases, clinicians have to consider several open questions in the management of type 2 diabetes, one of which is the cardiovascular risk profile of each regimen. Recent placebo-controlled cardiovascular outcome trials (CVOTs) have responded to some of these questions, but careful interpretation is needed. After general disappointment around CVOTs assessing safety of DPP-4 inhibitors (SAVOR, TECOS, EXAMINE) and the GLP-1 receptor agonist lixisenatide (ELIXA), the EMPA-REG Outcome trial and the LEADER trial have shown superiority of the SGLT2-I empagliflozin and the GLP-1RA liraglutide, respectively, on the 3-point MACE outcome (cardiovascular death, non-fatal myocardial infarction or stroke) and cardiovascular, as well as all-cause mortality. While available mechanistic studies largely support a cardioprotective effect of GLP-1, the ability of SGLT2 inhibitor(s) to prevent cardiovascular death was unexpected and deserves future investigation. We herein review the results of completed CVOTs of glucose-lowering medications and suggest a possible treatment algorithm based on cardiac and renal co-morbidities to translate CVOT findings into clinical practice

    Effects of once-weekly semaglutide vs once-daily canagliflozin on body composition in type 2 diabetes:a substudy of the SUSTAIN 8 randomised, controlled clinical trial

    Get PDF
    Aims/hypothesis: Intra-abdominal or visceral obesity is associated with insulin resistance and an increased risk for cardiovascular disease. This study aimed to compare the effects of semaglutide 1.0 mg and canagliflozin 300 mg on body composition in a subset of participants from the SUSTAIN 8 Phase IIIB, randomised double-blind trial who underwent whole-body dual-energy x-ray absorptiometry (DXA) scanning.Methods: Adults (age ≥18 years) with type 2 diabetes, HbA 1c 53–91 mmol/mol (7.0–10.5%), on a stable daily dose of metformin (≥1500 mg or maximum tolerated dose) and with an eGFR ≥60 ml min −1 [1.73 m] −2 were randomised 1:1 to semaglutide 1.0 mg once weekly and canagliflozin placebo once daily, or canagliflozin 300 mg once daily and semaglutide placebo once weekly. Body composition was assessed using whole-body DXA scans. The study participants and investigator remained blinded throughout the trial, and quality of DXA scans was evaluated in a blinded manner. Change from baseline to week 52 in total fat mass (kg) was the confirmatory efficacy endpoint.Results: A subset of 178 participants (semaglutide, n = 88; canagliflozin, n = 90) underwent DXA scanning at screening and were randomised into the substudy. Of these, 114 (semaglutide, n = 53; canagliflozin, n = 61) participants had observed end-of-treatment data included in the confirmatory efficacy analysis. Of the 178 participants in the substudy, numerical improvements in body composition (including fat mass, lean mass and visceral fat mass) were observed after 52 weeks with both treatments. Total fat mass (baseline 33.2 kg) was reduced by 3.4 kg and 2.6 kg with semaglutide and canagliflozin, respectively (estimated treatment difference: –0.79 [95% CI −2.10, 0.51]). Although total lean mass (baseline 51.3 kg) was also reduced by 2.3 kg and 1.5 kg with semaglutide and canagliflozin, respectively (estimated treatment difference: −0.78 [−1.61, 0.04]), the proportion of lean mass (baseline 59.4%) increased by 1.2%- and 1.1%-point, respectively (estimated treatment difference 0.14 [−0.89, 1.17]). Changes in visceral fat mass and overall changes in body composition (assessed by the fat to lean mass ratio) were comparable between the two treatment groups.Conclusions/interpretation: In individuals with uncontrolled type 2 diabetes on stable-dose metformin therapy, the changes in body composition with semaglutide and canagliflozin were not significantly different. Although numerical improvements in body composition were observed following treatment in both treatment arms, the specific impact of both treatments on body composition in the absence of a placebo arm is speculative at this stage. Trial registration: ClinicalTrials.gov NCT03136484. Funding: This trial was supported by Novo Nordisk A/S, Denmark. </p

    When intensive insulin therapy (MDi) fails in patients with type 2 diabetes: Switching to GLP-1 receptor agonist versus insulin pump

    Get PDF
    Treatment with insulin, alone or with oral or injectable hypoglycemic agents, is becoming increasingly common in patients with type 2 diabetes. However, approximately 40% of patients fail to reach their glycemic targets with the initially prescribed regimen and require intensification of insulin therapy, which increases the risks of weight gain and hypoglycemia. Many of these patients eventually reach a state in which further increases in the insulin dosage fail to improve glycemic control while increasing the risks of weight gain and hypoglycemia. The recently completed OpT2mise clinical trial showed that continuous subcutaneous insulin infusion (CSII) is more effective in reducing glycated hemoglobin (HbA1c) than intensification of multiple daily injection (MDI) insulin therapy in patients with type 2 diabetes who do not respond to intensive insulin therapy. CSII therapy may also be useful in patients who do not reach glycemic targets despite multidrug therapy with basal-bolus insulin and other agents, including glucagon-like peptide (GLP)-1 receptor agonists; current guidelines offer no recommendations for the treatment of such patients. Importantly, insulin and GLP-1 receptor agonists have complementary effects on glycemia and, hence, can be used either sequentially or in combination in the initial management of diabetes. Patients who have not previously failed GLP-1 receptor agonist therapy may show reduction in weight and insulin dose, in addition to moderate improvement in HbA1c, when GLP-1 receptor agonist therapy is added to MDI regimens. In subjects with long-standing type 2 diabetes who do not respond to intensive insulin therapies, switching from MDI to CSII and/or the addition of GLP-1 receptor agonists to MDI have the potential to improve glycemic control without increasing the risk of adverse events

    Glycaemic control and antidiabetic treatment trends in primary care centres in patients with type 2 diabetes mellitus during 2007-2013 in Catalonia: a population-based study.

    Get PDF
    OBJECTIVES: To assess trends in prescribing practices of antidiabetic agents and glycaemic control in patients with type 2 diabetes mellitus (T2DM). DESIGN: Cross-sectional analysis using yearly clinical data and antidiabetic treatments prescribed obtained from an electronic population database. SETTING: Primary healthcare centres, including the entire population attended by the Institut Català de la Salut in Catalonia, Spain, from 2007 to 2013. PARTICIPANTS: Patients aged 31-90 years with a diagnosis of T2DM. RESULTS: The number of registered patients with T2DM in the database was 257 072 in 2007, increasing up to 343 969 in 2013. The proportion of patients not pharmacologically treated decreased by 9.7% (95% CI -9.48% to -9.92%), while there was an increase in the percentage of patients on monotherapy (4.4% increase; 95% CI 4.16% to 4.64%), combination therapy (2.8% increase; 95% CI 2.58% to 3.02%), and insulin alone or in combination (increasing 2.5%; 95% CI 2.2% to 2.8%). The use of metformin and dipeptidyl peptidase-IV inhibitors increased gradually, while sulfonylureas, glitazones and α-glucosidase inhibitors decreased. The use of glinides remained stable, and the use of glucagon-like peptide-1 receptor agonists was still marginal. Regarding glycaemic control, there were no relevant differences across years: mean glycated haemoglobin (HbA1c) value was around 7.2%; the percentage of patients reaching an HbA1c≤7% target ranged between 52.2% and 55.6%; and those attaining their individualised target from 72.8% to 75.7%. CONCLUSIONS: Although the proportion of patients under pharmacological treatment increased substantially over time and there was an increase in the use of combination therapies, there have not been relevant changes in glycaemic control during the 2007-2013 period in Catalonia

    Acute renal effects of the GLP-1 receptor agonist exenatide in overweight type 2 diabetes patients: a randomised, double-blind, placebo-controlled trial

    Get PDF
    Aims/hypothesis: This study aimed to investigate the acute renal effects of the glucagon-like peptide-1 receptor agonist (GLP-1RA) exenatide in type 2 diabetes patients. Methods: We included overweight (BMI 25–40 kg/m2) men and postmenopausal women, aged 35–75 years with type 2 diabetes (HbA1c 48–75 mmol/mol; 6.5–9.0%) and estimated GFR ≥ 60 ml min−1 1.73 m−2. Exenatide or placebo (NaCl solution, 154 mmol/l) was administrated intravenously in an acute, randomised, double-blind, placebo-controlled trial conducted at the Diabetes Center VU University Medical Center (VUMC). GFR (primary endpoint) and effective renal plasma flow (ERPF) were determined by inulin and para-aminohippurate clearance, respectively, based on timed urine sampling. Filtration fraction (FF) and effective renal vascular resistance (ERVR) were calculated, and glomerular hydrostatic pressure (PGLO) and vascular resistance of the afferent (RA) and efferent (RE) renal arteriole were estimated. Tubular function was assessed by absolute and fractional excretion of sodium (FENa), potassium (FEK) and urea (FEU), in addition to urine osmolality, pH and free water clearance. Renal damage markers, BP and plasma glucose were also determined. Results: Of the 57 patients randomised by computer, 52 were included in the final analyses. Exenatide (n = 24) did not affect GFR (mean difference +2 ± 3 ml min−1 1.73 m−2, p = 0.489), ERPF, FF, ERVR or PGLO, compared with placebo (n = 28). Exenatide increased RA (p < 0.05), but did not change RE. Exenatide increased FENa, FEK, urine osmolality and pH, while FEU, urinary flow and free water clearance were decreased (all p < 0.05). Osmolar clearance and renal damage makers were not affected. Diastolic BP and mean arterial pressure increased by 3 ± 1 and 6 ± 2 mmHg, respectively, whereas plasma glucose decreased by 1.4 ± 0.1 mmol/l (all p < 0.05). Conclusions/interpretation: Exenatide infusion does not acutely affect renal haemodynamics in overweight type 2 diabetes patients at normal filtration levels. Furthermore, acute GLP-1RA administration increases proximal sodium excretion in these patients. Trial registration: ClincialTrials.gov NCT01744236 Funding: The research leading to these results has been funded from: (1) the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 282521 – the SAFEGUARD project; and (2) the Dutch Kidney Foundation, under grant agreement IP12.87

    Acute renal effects of the GLP-1 receptor agonist exenatide in overweight type 2 diabetes patients: a randomised, double-blind, placebo-controlled trial

    Get PDF
    Aims/hypothesis: This study aimed to investigate the acute renal effects of the glucagon-like peptide-1 receptor agonist (GLP-1RA) exenatide in type 2 diabetes patients. Methods: We included overweight (BMI 25–40 kg/m2) men and postmenopausal women, aged 35–75 years with type 2 diabetes (HbA1c 48–75 mmol/mol; 6.5–9.0%) and estimated GFR ≥ 60 ml min−1 1.73 m−2. Exenatide or placebo (NaCl solution, 154 mmol/l) was administrated intravenously in an acute, randomised, double-blind, placebo-controlled trial conducted at the Diabetes Center VU University Medical Center (VUMC). GFR (primary endpoint) and effective renal plasma flow (ERPF) were determined by inulin and para-aminohippurate clearance, respectively, based on timed urine sampling. Filtration fraction (FF) and effective renal vascular resistance (ERVR) were calculated, and glomerular hydrostatic pressure (PGLO) and vascular resistance of the afferent (RA) and efferent (RE) renal arteriole were estimated. Tubular function was assessed by absolute and fractional excretion of sodium (FENa), potassium (FEK) and urea (FEU), in addition to urine osmolality, pH and free water clearance. Renal damage markers, BP and plasma glucose were also determined. Results: Of the 57 patients randomised by computer, 52 were included in the final analyses. Exenatide (n = 24) did not affect GFR (mean difference +2 ± 3 ml min−1 1.73 m−2, p = 0.489), ERPF, FF, ERVR or PGLO, compared with placebo (n = 28). Exenatide increased RA (p < 0.05), but did not change RE. Exenatide increased FENa, FEK, urine osmolality and pH, while FEU, urinary flow and free water clearance were decreased (all p < 0.05). Osmolar clearance and renal damage makers were not affected. Diastolic BP and mean arterial pressure increased by 3 ± 1 and 6 ± 2 mmHg, respectively, whereas plasma glucose decreased by 1.4 ± 0.1 mmol/l (all p < 0.05). Conclusions/interpretation: Exenatide infusion does not acutely affect renal haemodynamics in overweight type 2 diabetes patients at normal filtration levels. Furthermore, acute GLP-1RA administration increases proximal sodium excretion in these patients. Trial registration: ClincialTrials.gov NCT01744236 Funding: The research leading to these results has been funded from: (1) the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 282521 – the SAFEGUARD project; and (2) the Dutch Kidney Foundation, under grant agreement IP12.87
    corecore