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Abstract
Aims/hypothesis This study aimed to investigate the acute re-
nal effects of the glucagon-like peptide-1 receptor agonist
(GLP-1RA) exenatide in type 2 diabetes patients.
Methods We included overweight (BMI 25–40 kg/m2) men
and postmenopausal women, aged 35–75 years with type 2
diabetes (HbA1c 48–75 mmol/mol; 6.5–9.0%) and estimated
GFR≥60 ml min−1 1.73 m−2. Exenatide or placebo (NaCl
solution, 154 mmol/l) was administrated intravenously in an
acute, randomised, double-blind, placebo-controlled trial

conducted at the Diabetes Center VU University Medical
Center (VUMC). GFR (primary endpoint) and effective renal
plasma flow (ERPF) were determined by inulin and para-
aminohippurate clearance, respectively, based on timed urine
sampling. Filtration fraction (FF) and effective renal vascular
resistance (ERVR) were calculated, and glomerular hydrostat-
ic pressure (PGLO) and vascular resistance of the afferent (RA)
and efferent (RE) renal arteriole were estimated. Tubular func-
tion was assessed by absolute and fractional excretion of
sodium (FENa), potassium (FEK) and urea (FEU), in addition
to urine osmolality, pH and free water clearance. Renal dam-
age markers, BP and plasma glucose were also determined.
Results Of the 57 patients randomised by computer, 52 were
included in the final analyses. Exenatide (n=24) did not affect
GFR (mean difference +2±3 ml min−1 1.73 m−2, p=0.489),
ERPF, FF, ERVR or PGLO, compared with placebo (n=28).
Exenatide increased RA (p<0.05), but did not change RE.
Exenatide increased FENa, FEK, urine osmolality and pH,
while FEU, urinary flow and free water clearance were de-
creased (all p<0.05). Osmolar clearance and renal damage
makers were not affected. Diastolic BP and mean arterial pres-
sure increased by 3±1 and 6±2 mmHg, respectively, whereas
plasma glucose decreased by 1.4±0.1 mmol/l (all p<0.05).
Conclusions/interpretation Exenatide infusion does not
acutely affect renal haemodynamics in overweight type 2 di-
abetes patients at normal filtration levels. Furthermore, acute
GLP-1RA administration increases proximal sodium excre-
tion in these patients.
Trial registration ClincialTrials.gov NCT01744236
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Abbreviations
ACR Albumin/creatinine ratio
DKD Diabetic kidney disease
ERBF Effective renal blood flow
ERPF Effective renal plasma flow
ERVR Effective renal vascular resistance
FEK Fractional potassium excretion
FENa Fractional sodium excretion
FEU Fractional urea excretion
FF Filtration fraction
GLP-1 Glucagon-like peptide-1
GLP-1RA Glucagon-like peptide-1 receptor agonist
HR Heart rate
IQR Interquartile range
KIM-1 Kidney injury molecule-1
MAP Mean arterial pressure
NGAL Neutrophil gelatinase-associated lipocalin
NHE3 Na+/H+-exchanger isoform-3
PAH Aminohippurate sodium
PGLO Glomerular hydrostatic pressure
PRC Plasma renin concentration
RA Afferent renal arteriolar resistance
RAAS Renin–angiotensin–aldosterone system
RE Efferent renal arteriolar resistance
TGF Tubuloglomerular feedback
VUMC VU University Medical Center

Introduction

Diabetic kidney disease (DKD) has become the leading
cause of chronic and end-stage renal disease worldwide.
Despite current multifactorial treatment approaches to halt
the development and progression of DKD in type 2
diabetes, residual renal risk remains high [1]. Although all
glucose-lowering agents reduce hyperglycaemia-associated
renal risk, mounting evidence suggests that certain agents
may alter risk factors for DKD ‘beyond glycaemic control’
[1].

Glucagon-like peptide (GLP)-1 receptor agonists (GLP-
1RAs), which are glucose-lowering agents based on the gut-
derived incretin-hormone GLP-1, are now widely used in the
management of type 2 diabetes. GLP-1RAs improve
glycaemia by stimulating insulin and suppressing glucagon
secretion in a glucose-dependent manner [2], but have also

been associated with several extra-pancreatic actions, includ-
ing effects on the kidney [1, 3]. Shortly after Food and Drug
Administration (FDA) approval of the first GLP-1RA
(exenatide) in the USA in 2005, sporadic case reports de-
scribed the occurrence of acute renal failure following treat-
ment initiation in type 2 diabetes patients. However, to date,
such associations have not been supported by large database
analyses or (ongoing) clinical trials [4]. In contrast, more re-
cent evidence suggests that GLP-1RAs may exhibit
renoprotective properties beyond glucose lowering. As such,
GLP-1RAs reduce albuminuria, a surrogate renal endpoint, in
numerous phase III clinical trials [1, 3], and albuminuria pro-
gression was reduced in the cardiovascular safety outcome
study of the GLP-1RA lixisenatide in patients with type 2
diabetes [5].

Several mechanisms by which GLP-1RAs may affect
renal outcome have been proposed. First, GLP-1RAs lower
systolic BP by ∼2 mmHg and body weight by ∼3 kg during
long-term treatment, which may reduce renal complications
[1]. In addition, direct protective effects on the kidney
could be involved. As such, GLP-1RAs have been sug-
gested to rapidly reduce glomerular hydrostatic pressure
(PGLO) and (single-nephron) hyperfiltration, the second of
these being a known renal risk factor in diabetes [1, 3].
Indeed, infusion of the GLP-1 peptide increased sodium
excretion and reduced creatinine clearance in obese
hyperfiltrating insulin-resistant men [6], suggestive of a
diuretic action at the level of the proximal tubule, leading
to activation of tubuloglomerular feedback (TGF) [6, 7].
However, subsequent studies in normofiltrating healthy
men reported neutral renal haemodynamic effects follow-
ing GLP-1-infusion [6, 8, 9], or even increases in GFR,
effective renal plasma flow (ERPF) and estimated PGLO
after acute exenatide administration [10]. To date, the renal
effects of GLP-1RA therapy in patients with type 2 diabetes
remain unknown.

The current study aimed to assess the effects of the
GLP-1RA exenatide on gold-standard-measured renal
haemodynamics, as well as tubular function and renal
damage markers, in overweight patients with type 2
diabetes. We hypothesised that GLP-1RAs reduce GFR
and PGLO in type 2 diabetes acutely, i.e. independent of
chronic changes in body weight or composition, by
stimulating TGF.

Methods

Trial design This was an acute, randomised, double-blind,
placebo-controlled trial designed to assess the acute effects
of the GLP-1RA exenatide on renal physiology in patients
with type 2 diabetes, as described previously [11]. The study
was approved by the ethics review board of the VUUniversity
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Medical Center (VUMC) and local authorities. The study was
registered at ClinicalTrials.gov (NCT01744236) and conduct-
ed in accordance with the Declaration of Helsinki and the
International Conference on Harmonization of Good Clinical
Practice. All patients provided written informed consent be-
fore participation.

Study population The inclusion and exclusion criteria of the
study have been reported previously [11]. In brief, white, over-
weight (BMI 25–40 kg/m2) men and postmenopausal women,
aged 35–75 years, with type 2 diabetes (HbA1c 48–75 mmol/
mol; 6.5–9.0%) were recruited by advertisements in local news-
papers. Patients were on a stable dose of metformin and/or sul-
fonylurea for at least 3 months prior to inclusion. Exclusion
criteria included: use of diuretics that could not be stopped for
the duration of the study; a history of pancreatic disease; active
liver disease; malignancy; estimated GFR< 60 ml min−1

1.73 m−2; current urinary tract infection or active nephritis; and
neurogenic bladder (an ultrasonic bladder scan was performed to
ensure total bladder emptying).

Intervention and randomisation Patients were randomised
by the trial pharmacist to receive either exenatide or placebo,
with an allocation ratio of 1:1 and a block size of six, using
computer-generated lists. The pharmacist provided a
randomisation list to an independent study physician, who pre-
pared and administered the study drugs but was not involved in
data collection or analyses. Because exenatide–placebo pens for
subcutaneous administration were not available, the study drug
was administered intravenously, thereby allowing blinding of
both participants and study personnel. In addition, such admin-
istration allows for more stable exenatide plasma levels. The
intravenous solution contained 46 ml of NaCl solution
(154 mmol/l) and 4 ml of the participant’s blood (to prevent
binding of the study drug to the infusion material), with either
10 μg exenatide (AstraZeneca, London, UK) or an equivalent
volume of NaCl solution 154 mmol/l (placebo). This schedule
has been previously shown to yield plasma exenatide levels
within the therapeutic range (130–150 pg/ml), with identical
pharmacokinetics as observed after subcutaneous injection,
and is well tolerated [12, 13].

Study protocol Two days prior to the study visit, participants
were instructed to adhere to an average intake of NaCl (9–12 g/
day) and protein (1.5–2.0 mg/kg/day) to reduce diet-induced

variation in renal physiology. In addition, participants were
instructed to refrain from vigorous physical activity and alcohol
ingestion for >24 h and from using caffeine or nicotine for >12 h
prior to the experiments. After an overnight fast, participants
were asked to drink 500 ml of tap water to stimulate diuresis
and to delay all medication until conclusion of the experiments,
except for their morning dose of metformin.

Participants arrived at the clinical research unit of the
Diabetes Center, VUMC, at 07:30 hours. A venous cannula
was inserted into an antecubital vein of the dominant arm for
infusion of the study drug and renal tracer substances. A sec-
ond cannula was inserted into an antecubital vein in the con-
tralateral arm for blood sampling. Blood and urine were col-
lected, after which participants assumed a semi-recumbent
position in a temperature-controlled room (23.0±1.0°C).

After an acclimatisation period of 60 to 90min [11], infusion
of inulin (Inutest, Fresenius Kabi Austria, Graz, Austria) and
aminohippurate sodium (PAH; 20%, Merck Sharp & Dohme
International, Merck, Whitehouse Station, NJ, USA) was
primed with 45 mg/kg and 6 mg/kg body weight, respectively.
Thereafter, maintenance infusion was started at 22.5 mg/min
for inulin (target plasma concentration 250 mg/l) and
12.7 mg/min for PAH (target plasma concentration 20 mg/l).
Following a 90 min equilibration period, urine was collected by
spontaneous voiding every 45 min for two periods, which was
repeated after 60 min of study-drug infusion (Fig. 1). Diuresis
was induced by oral intake of 10ml/kg (maximum 1000ml) tap
water during the inulin/PAH equilibration period, followed by
200 ml/h of tap water for the remainder of the study.

Participants were allowed to be upright during voiding
and encouraged to urinate until a subjective feeling of total
bladder emptying was reached. Before and after each urine-
collection period, blood samples were taken. Inulin and
PAH were measured in all urine and blood samples.
Urinary sodium, potassium, urea, osmolality and pH were
measured at the second baseline and both acute intervention
urine collections, and corresponding blood samples were
analysed for electrolytes. The second of two consecutive
urine collections was used to measure urinary markers of
renal damage, including albumin, neutrophil gelatinase-
associated lipocalin (NGAL) and kidney injury molecule-
1 (KIM-1), in addition to creatinine and glucose.
Haematocrit was determined between two urine-collection
periods. Insulin was measured prior to the renal tests, and
before the first and after the last urine-collection period of

Combined inulin/PAH infusion

Exenatide or placebo infusion

0 100 145 190 250 295 340

Urine collection

Time (min)

Urine collection

Fig. 1 Outline of experimental
procedures
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the acute intervention. Plasma renin concentration (PRC)
was determined before the renal tests and after the final
collection period. Intravenous lines were flushed with
2 ml NaCl solution 154 mmol/l after blood sampling, and
a 10 ml/h infusion of NaCl solution 154 mmol/l was
sustained throughout the testing day, corresponding to a
total volume load of 90 ml and a sodium load of ∼0.8 g
during the renal tests. Body water percentage was assessed
between the two urine-collection periods, using the single-
frequency, bioelectrical impedance analyser Maltron BF-
906 (Maltron International, Rayleigh, UK).

Assays Venous blood was drawn from the intravenous cannula
using syringes, directly transferred to designated BD Vacutainer
tubes (Franklin Lakes, NJ, USA) and centrifuged at 1370 g for
10 min at 4°C. Fasting plasma glucose, HbA1c (high-
performance liquid chromatography) and other baseline labora-
tory variables were measured before the renal experiments.
Venous blood glucose was measured using a YSI-2300 STAT
Glucose Analyser (YSI Life Sciences, Yellow Springs, OH,
USA) throughout the study, whereas the first plasma glucose
and urine glucose were measured using the Gluco-Quant-
hexokinase method on a Modular-P (Roche Diagnostics, Basel,
Switzerland). Haematocrit was determined using the automated
Cell-Dyn Sapphire (Abbott Diagnostics, Abbott Park, IL, USA).
Urinary and plasma sodium and potassiumwere measured using
the indirect ion-selective electrode method, whereas urea was
determined using enzymatic colorimetric tests on a Modular-P
auto analyser. Urinary osmolality was assessed by freezing-point
depression with a micro-osmometer (Fiske, Norwood, MA,
USA). Urinary pH was determined by hand-held VARIO
2 V00 pH meter and SenTix-V electrode (Wissenschaftlich-
TechnischeWerkstätten, Weilheim, Germany). Urinary albumin
levels were measured using immunonephelometric techniques.
Heparin-plasma and urine samples, stored at −80°C before the
assay, were used to assess inulin and PAH by colorimetric assay
after preparation with p-dimethylamino-benzaldehyde for inulin
[14] and trichloroacetic acid and indole-3-acetic acid for PAH
[15]. Urine concentrations of KIM-1 and NGAL were de-
termined by sandwich ELISA according to the manufac-
turer’s specification (R&D Systems, Minneapolis, MN,
USA). The intra- and inter-assay variations of NGAL
are 4.1% and 3.1%, respectively, and for KIM-1, the var-
iations are 8.8% and 10.7%, respectively. PRC was mea-
sured with a commercial immunoradiometric kit (Renin
III; Cisbio, Gif-sur-Yvette, France). Insulin was deter-
mined from heparin-plasma using an immunometric assay
(ADVIA Centaur-XP Immunoassay System, Siemens
Healthcare, Erlangen, Germany). The updated HOMA-IR
model, HOMA2-IR, was used to estimate insulin resis-
tance from fasting glucose and insulin (www.dtu.ox.ac.
uk/homacalculator).

Study endpoints The primary endpoint of this study was
exenatide-induced change in GFR compared with placebo
[11]. Secondary outcomes included all other (intra-)renal hae-
modynamic variables, renal handling of sodium, potassium
and urea, and renal damage markers. The effects of exenatide
on BP and blood glucose were also analysed.

Sample-size calculation We calculated that a sample size of
13 patients per group should be sufficient to detect a change of
at least 15%, assuming an SD of 8 ml/min,α=0.05 and power
(1−β) of 80% [11]. However, because the current study was
embedded in a long-term, three-armed intervention trial in 60
type 2 diabetes patients [11], a total of 30 patients per group
were included in this acute intervention study.

Calculation of renal physiology and markers of kidney
damage GFR and ERPF were calculated from inulin and
PAH clearances, respectively, based on timed urine sampling
[16] and averaged from consecutive urine-collection periods.
Effective renal blood flow (ERBF) was calculated by dividing
ERPF by (1 – haematocrit), filtration fraction (FF) by dividing
GFR by ERPF, and effective renal vascular resistance (ERVR)
by dividing mean arterial pressure (MAP) by ERBF. Intra-
renal haemodynamics (i.e. PGLO and afferent and efferent re-
nal vascular resistance [RA and RE, respectively]) were esti-
mated according to the model originally described by Gomez
[17] (see electronic supplementary material [ESM]). Absolute
electrolyte excretion was calculated by multiplying electrolyte
concentrations with urine flow. Fractional electrolyte excre-
tion of sodium (FENa), potassium (FEK) and urea (FEU) was
calculated by using inulin as reference substance. Plasma os-
molarity was calculated as 2[Na]+ [urea]+ [glucose]. Osmol
clearance was calculated by urine osmolality × urine
flow/plasma osmolarity. Free water clearance was calculated
as urine flow−osmol clearance. Renal damage markers were
corrected for creatinine and renal haemodynamic variables for
body surface area, calculated using the Mosteller formula
[18].

Data management and statistics Data were double entered
into an electronic data management system (OpenClinica LLC,
version 3.3, Waltham, MA, USA) and exported to the study
database. Before deblinding, urine-collection periods were vi-
sually inspected. Baseline urine-collection periods
characterised by profound collection errors, defined as an inulin
extraction ratio of greater or less than 1 SD of the mean, were
discarded from the analyses. Before deblinding, we excluded
five patients (all randomised to the exenatide group) from the
final analyses because of baseline urine-collection errors.

Multivariable linear regression models were performed in
the per protocol population, in which the study endpoint of
interest was used as a dependent, and treatment group as an
independent variable. We additionally included the
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corresponding baseline value in the model as an independent
variable to correct for potential between-group baseline differ-
ences. In cases where variables demonstrated a skewed distri-
bution (as assessed by visual inspection of histograms, Q–Q
plots and the Shapiro–Wilk test), log transformation was
applied. To assess potential effect modification, subgroup
analyses (which were not pre-specified, but in line with our
a priori hypothesis) were performed: patients with an
estimated GFR of greater or less than 90 ml min−1 1.73 m−2,
baseline measured GFR, FENa and urinary albumin/creatinine
ratio (ACR) of greater or less than median and use of
renin–angiotensin–aldosterone system (RAAS) inhibitors.

Endpoint measurements are reported as mean±SEM, or, in
the case of skewed distribution, median (interquartile range
[IQR]). A two-sided p<0.05 was considered statically signif-
icant. All analyses were performed using SPSS 22.0 (IBM
SPSS, Chicago, IL, USA).

Results

Between July 2013 and March 2015, 57 type 2 diabetes pa-
tients were randomised (Fig. 2). The final study population
comprised 28 patients in the placebo group and 24 patients
in the exenatide group. Overall, clinical and biochemistry
baseline characteristics were similar between the groups
(Table 1).

(Intra-)renal and systemic haemodynamic effects Exenatide
infusion did not affect GFR compared with placebo (mean
difference +2± 3 ml min−1 1.73 m−2, p=0.489) (Table 2;
refer to ESM Fig. 1 for individual responses). Also, no
between-group differences in ERPF (+3 ± 16 ml min−1

1.73 m−2, p= 0.852), ERBF (−2 ± 29 ml min−1 1.73 m−2,

p=0.952) or FF (p=0.166) were observed (Table 2). During
exenatide infusion, ERVR tended to increase by 0.018
±0.009 mmHg l−1 min−1 (p=0.065). A significant increase
in RA (p=0.010) and no changes in RE or PGLO were observed
(Table 2, ESM Fig. 2). Diastolic BP and MAP increased dur-
ing exenatide vs placebo by 3±1 and 6±2 mmHg (p<0.05),
respectively, whereas systolic BP did not change (Table 2).
Exenatide infusion increased the heart rate (HR) by
7±1 bpm (p<0.001).

Tubular function and renal damage effects Compared with
placebo, exenatide increased absolute sodium excretion by a
mean of 34±12 μmol min−1 1.73 m−2 (p=0.008), FENa by
0.30 ± 0.08% (p < 0.001) and FEK by 3 ± 1% (p = 0.016)
(Table 2). Exenatide infusion decreased FEU (3 ± 1%,
p = 0.002), urinary flow (1.1 ± 0.2 ml min−1 1.73 m−2,
p < 0.001) and free water clearance (0.9 ± 0.2 ml min−1

1.73 m−2, p<0.001), while urine osmolality and urinary pH
increased (both p<0.001, Table 2). Osmol clearance remained
unchanged (p=0.292). Compared with placebo, exenatide did
not change urinary glucose, albumin, NGAL or KIM-1 excre-
tion (p>0.05) (Table 2).

Effects on glucose, body water, renin and exploratory
analyses Blood glucose decreased after exenatide infusion
by a time-averaged mean of 1.4±0.1 mmol/l compared with
placebo (p<0.001) (ESM Fig. 3), whereas insulin increased
by 26±6 pmol/l (p<0.001). Body water percentage did not
change throughout the testing day, and no between-group dif-
ferences were observed (p=0.942). PRC, measured in 12
placebo-treated and nine exenatide-treated patients, did not
change in response to exenatide (p=0.401) (ESM Table 1).

Stratification according to baseline-estimated GFR,
measured GFR, FENa, ACR or use of RAAS inhibitors

Screening (n=95)

Inclusion (n=60)

Exenatide (n=29)

Dropout (n=3)
• Withdrawal of consent (n=2)
• Incidental finding (n=1)

Placebo (n=28) Exenatide (n=24)

Excluded from analyses (n=5) 
based on blind assessment 
of bladder emptying

Randomisation (n=57)

Fig. 2 Flow diagram of study
participants
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(ESM Fig. 4), or correction for between-group differences in
glucose or insulin (data not shown) did not change exenatide-
induced effects on GFR. In a multiple stepwise regression
analysis, exenatide-induced alterations in absolute sodium ex-
cretion or FENa were not explained by alterations in MAP.
Exenatide-induced changes in RA were explained by the in-
crease in MAP to a great extent (regression coefficient re-
duced from 1546 to 794 dyn s cm−5, p=0.153) and, in part,
by the increase in FENa (regression coefficient reduced to
1232 dyn s cm−5, p=0.047).

Adverse events In the exenatide group, four patients experi-
enced nausea without vomiting, while mild headache and di-
arrhoea occurred in one patient. No adverse events occurred in
the placebo group.

Discussion

The current randomised, placebo-controlled clinical trial is the
first to investigate the acute renal effects of a GLP-1RA in
overweight patients with type 2 diabetes. We demonstrate that
acute intravenous administration of exenatide does not affect
gold-standard-measured GFR and ERPF in these patients. In

addition, exenatide does not influence FF, PGLO or RE, while it
acutely increases RA. Absolute sodium excretion, FENa and
FEK increase, while FEU, urinary flow and free water clear-
ance decrease. Finally, we demonstrate that exenatide does not
affect PRC or urinary markers of renal damage following
acute administration.

Several studies have reported effects of GLP-1(RAs) on
renal haemodynamics in animals and humans. Previous find-
ings by Gutzwiller et al showed that GLP-1 infusion
reduced creatinine clearance measured GFR in 16 obese,
hyperfiltrating, insulin-resistant men (three of whom were di-
agnosed with type 2 diabetes) from 151 ml/min to 142 ml/min
[6]. Eight-week treatment with the GLP-1RA exendin-4 also
decreased hyperfiltration in a rat model of diabetes [19].
Additionally, an uncontrolled open-label study in 31
normofiltrating patients with type 2 diabetes showed that
7 weeks of treatment with liraglutide decreased GFR and al-
buminuria, likely by influencing renal haemodynamics [20],
effects which were sustained up to 1 year of treatment [21].
Moreover, reductions in albuminuria have been reported in
observational studies [20–22]. These studies have led to the
hypothesis that GLP-1RAs could confer renoprotection in di-
abetes by reducing PGLO and glomerular hyperfiltration, in
addition to improving the previously mentioned renal risk

Table 1 Baseline clinical and
biochemical characteristics Characteristic Placebo (n = 28) Exenatide (n= 24)

Clinical characteristics

Male sex, n (%) 23 (82.1) 16 (66.7)

Age, years 64 ± 6 61 ± 8

BMI, kg/m2 31.1 (28.2, 34.3) 31.1 (28.4, 33.2)

Current smoker, n (%) 6 (21.4) 5 (20.8)

Waist circumference, cm 111.7 ± 8.1 110.6 ± 12.9

Systolic BP, mmHg 136 ± 16 134 ± 13

Diastolic BP, mmHg 76± 6 76 ± 7

MAP, mmHg 97± 10 96 ± 8

HR, bpm 67± 10 64 ± 5

Diabetes history characteristics

Type 2 diabetes duration, years 7 (4, 13) 7 (4, 10)

Metformin use, n (%) 26 (92.9) 23 (95.8)

Sulfonylurea use, n (%) 13 (46.4) 10 (41.7)

Antihypertensive medication use, n (%) 17 (60.7) 17 (70.8)

RAAS inhibitor use, n (%) 16 (57.1) 16 (66.7)

Biochemistry

HbA1c, % 7.3 ± 0.7 7.3 ± 0.6

HbA1c, mmol/mol 56 ± 8 57 ± 6

Fasting plasma glucose, mmol/l 8.6 ± 1.9 8.2 ± 1.0

HOMA2-IR 1.81 (1.04, 2.59) 1.56 (1.18, 2.28)

Estimated GFR, ml min−1 1.73 m−2a 91 (80, 112) 93 (82, 103)

Data are shown as percentage (%), mean ± SD or median (IQR)
a Calculated using the Modification of Diet in Renal Disease (MDRD) study equation: 186 × (serum creatinine
[mg/dl])−1.154 × (age [year])−0.203 × (0.742, if female) [45]
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factors that are affected by long-term GLP-RA treatment, in-
cluding body weight, BP and albuminuria [1, 3].

However, in the present study, we did not find an acute effect
of exenatide infusion on renal haemodynamics in overweight
type 2 diabetes patients with normal renal function at baseline.
Our findings are in line with some other acute intervention stud-
ies in healthy normofiltrating men that examined the effect of
intravenous GLP-1 [6, 8, 9]. Remarkably, several preclinical
studies reported increases in GFR and ERPF during short-term
interventionwithGLP-1 [23–25] andGLP-1RAs [7, 26, 27]. It is
noteworthy that these studies were performed in animals without
diabetes, and GLP-1 and GLP-1RAs were used at doses exceed-
ing human therapeutic concentrations. Moreover, we recently
demonstrated that exenatide infusion in ten healthy overweight
men increased inulin-measured GFR and PAH-measured ERPF

[10]. These contradictory effects of GLP-1(RAs) on renal
haemodynamics may be somewhat confusing, but could be
due to dissimilar study designs, or could reflect population-
dependent effects.

Renal haemodynamics are controlled by intra-renal
autoregulatory mechanisms mediated by TGF and myogenic
responses, which primarily affect vasomotor tone of the
(preglomerular) afferent arteriole [28]. TGF refers to a series
of events whereby changes in NaCl concentrations in the tu-
bular fluid are sensed by the cells of the distally located mac-
ula densa, eliciting inverse reactions in single-nephron GFR
by directly affecting the vascular tone of the afferent arteriole
[29]. Furthermore, increased sodium delivery to the macula
densa reduces renin secretion. In diabetes, chronic
hyperglycaemia leads to augmented renal proximal sodium

Table 2 Haemodynamic, tubular
and renal damage marker re-
sponses to GLP-1RA exenatide
administration in overweight pa-
tients with type 2 diabetes

Placebo (n = 28) Exenatide (n = 24)

Variable Baseline Intervention Baseline Intervention

Renal haemodynamics
GFR (ml min−1 1.73 m−2) 82 ± 4 83 ± 3 83 ± 3 86 ± 4
ERPF (ml min−1 1.73 m−2) 345 ± 18 366 ± 18 343 ± 13 367 ± 18
ERBF (ml min−1 1.73 m−2) 605 ± 32 647 ± 35 583 ± 23 623 ± 32
FF 0.244 ± 0.005 0.230 ± 0.003 0.245 ± 0.005 0.236 ± 0.006
ERVR (mmHg l−1 min−1) 0.184 ± 0.012 0.170 ± 0.010 0.173 ± 0.007 0.176 ± 0.010
PGLO (mmHg) 60 ± 1 60 ± 1 61 ± 1 62 ± 1
RA (dyn s cm−5) 6176 ± 607 5712 ± 567 5384 ± 362 6461 ± 670**
RE (dyn s cm−5) 3957 ± 105 3732 ± 83 4086 ± 102 3927 ± 109

Renal tubular function
Na excretion (μmol min−1

1.73 m−2)
127 ± 10 153 ± 10 134 ± 10 189 ± 13**

K excretion (μmol min−1

1.73 m−2)
62 ± 4 61 ± 5 66 ± 3 65 ± 4

Urea excretion (μmol min−1

1.73 m−2)
253 ± 16 243 ± 12 242 ± 14 219 ± 10

FENa (%) 1.24 ± 0.11 1.33 ± 0.10 1.22 ± 0.10 1.61 ± 0.13***
FEK (%) 21 ± 1 17 ± 1 20 ± 1 20 ± 1*
FEU (%) 70 ± 2 69 ± 1 67 ± 2 64 ± 1**
Urinary pH 5.76 ± 0.11 5.71 ± 0.11 5.91 ± 0.11 6.53 ± 0.12***
Urine osmolality (mOsm/kg) 204 ± 32 225 ± 14 188 ± 15 355 ± 24***
Urinary flow
(ml min−1 1.73 m−2)

5.2 ± 0.2 3.4 ± 0.1 5.2 ± 0.3 2.4 ± 0.2***

Osmol clearance
(ml min−1 1.73 m−2)

2.4 (2.0, 2.8) 2.5 (2.3, 2.9) 2.3 (2.1, 2.7) 2.4 (2.1, 2.8)

Free water clearance
(ml min−1 1.73 m−2)

1.2 ± 3.2 0.9 ± 0.7 1.8 ± 1.7 0.0 ± 0.81***

Renal damage
ACR (mg/mmol) 1.04 (0.45,

1.80)
0.67 (0.46,

1.04)
0.93 (0.47,

3.21)
0.83 (0.40, 2.22)

NGAL (ng/mmol) 1229 (671,
1890)

1369 (945,
1815)

1460 (798,
3082)

1779 (1068,
2603)

KIM-1 (ng/mmol) 79 (48, 143) 51 (38, 79) 89 (54, 122) 63 (48, 80)
Systemic haemodynamics

Systolic BP (mmHg) 139 ± 3 145 ± 4 139 ± 2 151 ± 4
Diastolic BP (mmHg) 80 ± 1 80 ± 1 77 ± 1 81 ± 2*
MAP (mmHg) 102 ± 2 103 ± 2 99 ± 2 106 ± 2*
HR (bpm) 67 ± 2 68 ± 2 63 ± 1 70 ± 1***

Data are means ± SEM or median (IQR)

*p< 0.05, **p< 0.01, ***p< 0.001 for exenatide-induced effect vs placebo based on multivariable linear regres-
sion, and corrected for potential between-group baseline difference
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reabsorption in the proximal tubule, thereby reducing distal
NaCl and increasing TGF-regulated (single-nephron) GFR [1,
3]. GLP-1(RAs) have been suggested to restore this maladap-
tive response by reducing proximal sodium reabsorption [6, 8,
10], and to reduce renin activity [6]. Although exenatide in-
creased sodium excretion in our study, and changes in FENa
partly explained the changes in RA, we did not find an effect
on GFR or PRC. It could be speculated that GLP-1RAs have
little to no TGF-mediated effects in type 2 diabetes patients
with normal renal function, or that a potential response is
blunted by other effects. Alternatively, although the extensive
use of RAAS inhibitors in the current study enabled us to
investigate clinically relevant effects on top of standard
renoprotective care [1], it may have impeded the possibility
of detect ing GLP-1RA-induced changes in renal
haemodynamics, as these antihypertensive drugs are known
to decrease PGLO and (single-nephron) hyperfiltration by re-
ducing RE [3]. However, our analyses did not indicate that
these agents modified exenatide-induced effects on GFR.

GLP-1 receptors have been demonstrated in human and
monkey smooth muscle cells of the afferent renal arteriole
using a validated monoclonal antibody [30]. We previously
showed that exenatide reduced RA in overweight men, lead-
ing to increases in GFR, ERPF and PGLO. This effect was at
least partially dependent on NO [10]. These findings are in
line with studies in rats, which demonstrated that GLP-1
receptor activation reduces the autoregulatory response of
afferent arterioles to an acute increase in pressure [25].
However, we observed an increase in RA, which was large-
ly explained by the increase in MAP and, as such, may
reflect a (conserved) autoregulatory response activated by
stretching of the vascular smooth muscle cells. Although
such causality cannot definitely be determined in this study,
our findings are compatible with previous studies demon-
strating impaired NO-dependent vasodilation in type 2 di-
abetes patients [31] and vascular resistance to GLP-1RA in
swine with metabolic syndrome [32]. Increases in BP fol-
lowing acute GLP-1RA-administration have been widely
observed, and both direct sympathetic nervous system ac-
tivation and reflex tachycardia as a response to vasodilation
have been implicated, although the exact mechanism is un-
clear [33].

The effects of GLP-1(RAs) on tubular electrolyte handling
have been reported in several studies. We demonstrate that a
GLP-1RA reduces tubular sodium reabsorption and H excre-
tion in type 2 diabetes, in line with previous investigations in
healthy and overweight men, and this may help explain the
reportedGLP-1RA-mediated reductions in BP in clinical trials
[6, 8, 10]. Furthermore, we observe an increase in urinary
potassium excretion, which indicates that the ratio of sodium
reabsorption to potassium secretion is affected in the cortical
collecting tubule, as was also observed in preclinical studies
[23].

GLP-1(RAs)-mediated natriuresis has been attributed to a
reduction in Na+/H+-exchanger isoform-3 (NHE3) activity in
the proximal tubule [6, 8, 10]. Notwithstanding, recent well-
performed studies were unable to detect GLP-1 receptors in
the tubular lumen [30]. Also, the role of other hormones that
influence tubular sodium handling, including angiotensin II
[8], are still uncertain, whereas recent studies argue against
the involvement of atrial natriuretic peptide [34]. Although
exenatide-induced increases in MAP did not explain natriure-
sis in our analyses, we cannot exclude a role for pressure
natriuresis. Interestingly, NHE3 is redistributed and subse-
quently de-activated in response to an increase in BP [35].
Modest increases in BP have also been observed in other
studies reporting GLP-1RA-induced natriuresis [34, 36].
Detailed clinical studies are needed to examine whether renal
sodium excretion is sustained after prolonged GLP-1RA
treatment.

Exenatide infusion reduced urinary flow, free water clear-
ance and FEU without affecting osmol clearance. These find-
ings are compatible with increases in vasopressin levels or
vasopressin receptor activation. Notably, human studies have
shown GLP-1 receptor expression in the supraoptic nucleus,
which is known to synthesise vasopressin [37]. In rodents,
acute GLP-1 administration elevates plasma vasopressin
[38], while others reported that vasopressin blockade prevents
an acute GLP-1-induced increase in BP [39]. Moreover, a
reduction in the gastric emptying rate [2] and/or intestinal
sodium absorption [40] may also explain our findings, as this
may have led to reduced water absorption. In contrast to our
findings, exenatide stimulated free water clearance in rats and
humans [41, 42], potentially through prostaglandin E2 [43].

Renal damage markers did not change in response to acute
exenatide. Although changes were not expected after such
short-term drug exposure, the absence of an increase may be
important in the light of reported cases of GLP-1RA-
associated acute renal failure [3, 4].

Our study has some limitations that need to be addressed.
First, we cannot exclude the confounding effects of glucose
lowering, which may acutely reduce GFR [44] and could
therefore have blunted a potential exenatide-induced increase
in GFR (by exenatide per se), or hormonal differences (e.g.
insulin), as we did not perform clamp studies. However, the
aim of the current study was to assess real-life effects. Second,
we excluded five patients from the final analyses, who were,
unfortunately, all in the exenatide group. Exclusions were per-
formed in a blinded manner, based on collection errors during
baseline measurements, ruling out any influence of exenatide
infusion. Importantly, exclusion of these patients, leaving a
total of 24 patients in the exenatide group, did not negatively
affect our statistical power. Third, the gastric inhibitory effect
of exenatide may have reduced gastrointestinal water uptake,
thereby reducing urinary flow during testing periods. Fourth,
acute renal effects could differ from long-term effects. Finally,
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estimation of intra-renal haemodynamic variables with the
Gomez formulae necessitates assumptions.

In conclusion, we demonstrate that the GLP-1RA
exenatide does not affect GFR, ERPF and PGLO in overweight
type 2 diabetes patients with normal renal function. In addi-
tion, we confirm that GLP-1RA administration increases uri-
nary sodium excretion and urinary pH, which may be due to
inhibition of the NHE3 in the proximal tubule or GLP-1RA-
induced pressure natriuresis. The long-term renal effects of
GLP-1RA in type 2 diabetes remain to be determined.
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